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Abstract

This paper is concerned with decay and symmetry properties of solitary-wave solutions to a nonlocal 
shallow-water wave model. An exponential decay result for supercritical solitary-wave solutions is given. 
Moreover, it is shown that all such solitary-wave solutions are symmetric and monotone on either side of the 
crest. The proof is based on the method of moving planes. Furthermore, a close relation between symmetric 
and traveling-wave solutions is established.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamics of water waves for an inviscid perfect fluid are described by the Euler equations, 
complemented with suitable boundary conditions. Due to the intricate character of this system, 
a rigorous mathematical study of its solutions is challenging and it is one aim in the analysis 
of water waves to derive model equations which capture as many as possible of the phenomena 
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displayed by water waves. In the context of irrotational, small-amplitude, shallow-water waves, 
it is well-known that the Korteweg–de Vries equation (KdV),
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can be rigorously deduced as a consistent approximation to the Euler equations [29]. Here, η(t, x)

describes the surface displacement from an undisturbed flow over a flat bottom at time t ∈ [0, ∞)

and spatial position x ∈ R. The constant c0 := √
gh0 is the limiting long-wave speed, h0 is the 

undisturbed fluid depth and g denotes the gravitational constant of acceleration. Equation (1.1)
may be equivalently expressed in nonlocal form as
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where F−1 denotes the inverse (spatial) Fourier transform, and
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is the dispersion relation of the KdV equation. Noticing that c is a second-order approximation 
of the exact dispersion relation of the linearized Euler equations,
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G.B. Whitham [36] suggested what is today termed the Whitham equation,
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as an alternative to the KdV equation. Here, Kh0 := F−1
(
mh0

)
is the integral kernel corre-

sponding to a (genuinely) nonlocal Fourier multiplier operator with symbol mh0 . This approach 
of dispersion improving is often applied to improve the modeling aspects of fluid dynamics 
equations [29], as it weakens the role of dispersion towards that of the full Euler equations. 
Equation (1.2) can also be obtained directly from the Euler equations via an exponential scal-
ing [31]. From a consistency point of view, the equation (1.2) is neither a better nor a worse model 
than the KdV equation: their solutions both approximate shallow-water, small-amplitude gravity 
water-wave solutions of the Euler equations to the same order on appropriate time scales [29]. 
As described below, the Whitham equation (1.2) however has the property of capturing several 
of the mathematical features of the Euler equations, that the KdV equation does not (including 
nonlocality, break-down of solutions, modulational instability and highest waves).

The purpose of the present paper is to analyze geometric properties of solitary-wave solutions 
to the Whitham equation. We will show that the Whitham equation captures various character-
istics of solitary solutions to the Euler equations. In the same physical setting as ours, it was 
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