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Abstract

We study the periodic boundary value problem associated with the second order nonlinear differential 
equation

u′′ + cu′ + (
a+(t) − μa−(t)

)
g(u) = 0,

where g(u) has superlinear growth at zero and at infinity, a(t) is a periodic sign-changing weight, c ∈R and 
μ > 0 is a real parameter. Our model includes (for c = 0) the so-called nonlinear Hill’s equation. We prove 
the existence of 2m − 1 positive solutions when a(t) has m positive humps separated by m negative ones 
(in a periodicity interval) and μ is sufficiently large, thus giving a complete solution to a problem raised 
by G.J. Butler in 1976. The proof is based on Mawhin’s coincidence degree defined in open (possibly 
unbounded) sets and applies also to Neumann boundary conditions. Our method also provides a topological 
approach to detect subharmonic solutions.
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1. Introduction

Let R+ := [0, +∞[ denote the set of non-negative real numbers and let g : R+ → R+ be a 
continuous function such that

g(0) = 0, g(s) > 0 for s > 0. (g∗)

In the present paper we study the problem of existence and multiplicity of positive T -periodic 
solutions to the second order nonlinear differential equation

u′′ + cu′ + w(t)g(u) = 0, (1.1)

where c ∈ R and w : R → R is a T -periodic locally integrable weight function. Solutions to (1.1)
are meant in the Carathéodory sense. A positive solution is a solution such that u(t) > 0 for all 
t ∈ R. As is well known, solving the T -periodic problem for (1.1) is equivalent to find a solution 
of (1.1) satisfying the boundary conditions u(0) = u(T ), u′(0) = u′(T ), on [0, T ] (any other 
time-interval of length T can be equivalently chosen).

Our aim is to consider a nonlinear vector field f (t, s) := w(t)g(s) satisfying suitable assump-
tions which cover the classical superlinear indefinite case, namely g(s) = sp , with p > 1, and 
w(t) a sign-changing coefficient. Our main result guarantees the existence of at least 2m − 1
positive T -periodic solutions provided that, in a time-interval of length T , the weight function 
presents m positive humps separated by negative ones and the negative parts of w(t) are suffi-
ciently large. To be more precise, it is convenient to express w(t) as depending on a parameter 
μ > 0 in this manner:

w(t) = aμ(t) := a+(t) − μa−(t),

where a : R → R is a T -periodic locally integrable function. As usual, we denote by

a+(t) := a(t) + |a(t)|
2

and a−(t) := −a(t) + |a(t)|
2

the positive part and the negative part of a(t), respectively. Then, a typical corollary of our main 
result (cf. Theorem 3.1) for equation

u′′ + cu′ + (
a+(t) − μa−(t)

)
g(u) = 0 (E )

reads as follows.

Theorem 1.1. Suppose that there exist 2m + 1 points

σ1 < τ1 < . . . < σi < τi < . . . < σm < τm < σm+1, with σm+1 − σ1 = T ,
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