

Available online at www.sciencedirect.com

J. Differential Equations 262 (2017) 4314-4335

Journal of Differential Equations

www.elsevier.com/locate/jde

Global strong solution to compressible Navier–Stokes equations with density dependent viscosity and temperature dependent heat conductivity

Ran Duan^a, Ai Guo^{b,*}, Changjiang Zhu^b

^a School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China
 ^b School of Mathematics, South China University of Technology, Guangzhou, 510640, China

Received 17 September 2016; revised 6 January 2017

Available online 27 January 2017

Abstract

We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier– Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient $\mu(\rho) = 1 + \rho^{\alpha}$ and heat conductivity coefficient $\kappa(\theta) = \theta^{\beta}$ for all $\alpha \in [0, \infty)$ and $\beta \in (0, +\infty)$. © 2017 Elsevier Inc. All rights reserved.

MSC: 35L65; 35Q30; 76N10

Keywords: Compressible Navier–Stokes equations; Density dependent viscosity; Temperature dependent heat conductivity; Stress-free; Thermally insulated

1. Introduction

In this paper, we investigate the global strong solution to the following one-dimensional compressible Navier–Stokes equations in the Lagrangian coordinates:

Corresponding author. *E-mail address:* guoai@scut.edu.cn (A. Guo).

http://dx.doi.org/10.1016/j.jde.2017.01.007 0022-0396/© 2017 Elsevier Inc. All rights reserved. R. Duan et al. / J. Differential Equations 262 (2017) 4314-4335

$$\begin{cases} v_t - u_x = 0, \ x \in (0, 1), \ t > 0, \\ u_t + p_x = \left(\frac{\mu}{v}u_x\right)_x, \\ (e + \frac{1}{2}u^2)_t + (pu)_x = \left[\frac{\kappa\theta_x + \mu uu_x}{v}\right]_x, \end{cases}$$
(1.1)

with stress-free and thermally insulated boundary conditions

$$\left(\frac{\mu}{v}u_x - p\right)(d,t) = 0, \ \theta_x(d,t) = 0, \ d = 0, 1, \ t \ge 0,$$
(1.2)

under prescribed initial conditions

$$(v, u, \theta)(x, 0) = (v_0, u_0, \theta_0)(x), \ x \in (0, 1).$$
(1.3)

Here v, u, θ stand for specific volume, velocity and absolute temperature respectively. The pressure p, the internal energy e, the viscosity coefficient $\mu > 0$ and heat conductivity $\kappa > 0$ are functions of v and θ . The thermodynamic variables v, p, e, s and θ are related by the Gibbs equation de = ds - pdv, where s is the specific entropy.

The boundary conditions (1.2) describe the expansion of a finite mass of gas into vacuum. One also considers other kind of boundary conditions

$$u(d,t) = 0, \ \theta_x(d,t) = 0, \ d = 0, 1, \ t \ge 0,$$
 (1.4)

and these conditions (1.4) mean that the gas is confined into a fixed tube with impermeable gas.

For constant coefficients, Kazhykhove and Shelukhin established global existence and uniqueness of smooth solutions for arbitrarily large and smooth data in the seminal work [1] under boundary conditions (1.4). Later on, this result was generalized to cases when coefficients may depend on the Lagrangian space variable x by Amosov and Zlotnik [2,3].

However, based on the celebrated Chapman–Enskog expansion for the first order approximation, the viscosity μ and heat conductivity κ are functions of temperature, cf. [4,5]. Particularly, if the inter-molecule potential is proportional to r^{-a} with r being the molecule distance, then

$$\mu, \ \kappa \sim \theta^{\frac{d+4}{2a}}.\tag{1.5}$$

Note that for Maxwellian molecules (a = 4) the dependence is linear, while for elastic spheres $(a \rightarrow +\infty)$ the dependence is like $\sqrt{\theta}$.

The above dependence brings great difficulty and big challenge to mathematicians, especially temperature dependence on μ . One attempts to work out this problem under the assumption that the viscosity μ depends only on density first.

Dafermos [6] and Dafermos and Hsiao [7] considered the density dependence on μ , κ and temperature dependence on κ where they asked whether κ is bounded as well as uniformly bounded away from zero. Later on, Kawohl [8], Jiang [9,10] and Wang [11] established the global existence of smooth solutions for (1.1), (1.3) with boundary condition of either (1.2) or (1.4) under the assumption $\mu(v) \ge \mu_0 > 0$ for any v > 0 and κ may depend on both density and temperature. If, however, $\mu(v)$ tends to zero as $v \to \infty$, the situation becomes more delicate. For the case $\mu(\rho) = \rho^{\alpha}$, Jiang [12] showed that if $\mu(v)$ does not decrease to 0 too rapidly, then the smooth solution still exists globally in time when $0 < \alpha < \frac{1}{4}$. Later on, Qin and Yao [13,14] enlarged the range of α to $(0, \frac{1}{2})$. However, all these works [8–14] assumed there are constants

4315

Download English Version:

https://daneshyari.com/en/article/5774252

Download Persian Version:

https://daneshyari.com/article/5774252

Daneshyari.com