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Abstract

The Nikolaevskiy equation is an example of a pattern forming system with marginally stable long modes. 
It has the unusual property that the typical Ginzburg–Landau scaling ansatz for the description of propagat-
ing patterns does not yield asymptotically consistent amplitude equations. Instead, another scaling proposed 
by Matthews and Cox can be used to formally derive a consistent system of modulation equations. We give a 
rigorous proof that this system makes correct predictions about the dynamics of the Nikolaevskiy equation.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The Nikolaevskiy partial differential equation, given by

∂tu + u∂xu = −∂2
x

[
r − (1 + ∂2

x )2
]
u,

(x ∈ R, t ≥ 0, u(x, t) ∈ R) was proposed as a one-dimensional model for seismic waves in 
viscoelastic media, see [1]. It also serves as a paradigmatic model for a pattern forming system 
with Galilean invariance, see [4]. For our multiscale analysis near the onset of pattern formation, 
i.e., in the case 0 < r � 1, it is convenient to introduce a small parameter ε > 0, such that r = ε2, 
and write the Nikolaevskiy equation as
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Fig. 1. Linear dispersion relation for the Nikolaevskiy equation: Turing instability with marginally stable long modes.

∂tu = Lεu − 1

2
∂x(u

2), where Lε = ∂2
x (1 + ∂2

x )2 − ε2∂2
x . (1)

Looking at the linear dispersion relation,

λ = −k2(1 − k2)2 + ε2k2,

for modes u(x, t) = eikx+λt , we see that for ε > 0 the spatially homogeneous steady state u = 0
becomes linearly unstable via a short wave instability. In addition to the classical Turing instabil-
ity we also have a curve of eigenvalues touching the imaginary axis at the wave number k = 0, see 
Fig. 1. Hence, we have a spectral situation as considered in [3,9]. There, we derived amplitude 
equations for the propagation of small spatially periodic patterns using the typical Ginzburg–
Landau scaling X = εx, T = ε2t for the large spatial and temporal scale, respectively, an O(ε)

amplitude scaling for the pattern modes and an O(ε2) amplitude scaling for the long modes.
In [4], Matthews and Cox pointed out that for the Nikolaevskiy equation such a scaling leads 

to amplitude equations that are asymptotically inconsistent in the sense that they contain O(1/ε)

coefficients. Instead, they proposed an O(ε3/2) amplitude scaling of the pattern mode. Using the 
ansatz

ε3/2ψMC(x, t) = ε3/2A1(εx, ε2t)eix + c.c. + ε2A0(εx, ε2t),

where “c.c.” denotes the complex conjugate of the terms to the left, they derived the following 
system of amplitude equations for (1):

∂T A1 = 4∂2
XA1 + A1 − iA1A0,

∂T A0 = ∂2
XA0 − ∂X(|A1|2).

(2)

While it is reasonable to assume that ε3/2ψMC with A1 and A0 given as solutions of (2) is 
a good approximation to a true solution of (1), it is not obvious. In fact, there are cases where 
approximations based on formally correctly derived amplitude equations make wrong predictions 
about the original system, see, e.g., [6–8].

In case of the Nikolaevskiy equation, so far, the question of validity has been tackled by 
numerical investigations only. While in [4,10] the simulations seem to verify the unusual scaling 
by Matthews and Cox, more recent results raise doubts, see [11].

In this paper we give a rigorous proof that the Matthews–Cox approximation is indeed valid 
and that all the dynamics of the Matthews–Cox system (2) in the respective phase spaces can be 
found in the Nikolaevskiy equation as well. For the proof of validity we apply methods that have 
already proven useful in the context of the justification of the Ginzburg–Landau approximation. 
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