

Available online at www.sciencedirect.com

J. Differential Equations 262 (2017) 5468-5496

Journal of Differential Equations

www.elsevier.com/locate/jde

Restricting Riesz–Morrey–Hardy potentials

L. Liu^a, J. Xiao^{b,*}

^a Department of Mathematics, School of Information, Renmin University of China, Beijing 100872, China ^b Department of Mathematics and Statistics, Memorial University, St. John's, NL A1C 557, Canada

> Received 15 November 2016; revised 13 January 2017 Available online 7 February 2017

Abstract

To strengthen the weak restriction principle discovered in both [2, Theorem 5.1] for $\lambda = \kappa$ and [32, Lemma 2.1] for $\lambda < \kappa$, this paper shows that the Riesz operator I_{α} of order α maps the Morrey–Hardy space $LH^{p,\kappa}$ to the Morrey–Radon space $L_{\mu}^{q,\lambda}$ continuously if and only if

$$\sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)}\mu(B(x,r))/r^{\beta}<\infty \text{ provided} \begin{cases} 0<\lambda\leq\kappa\leq n;\\ 0<\alpha< n;\\ 1\leq p<\kappa/\alpha;\\ n-\alpha p<\beta\leq n;\\ 0< q=p(\beta+\lambda-n)/(\kappa-\alpha p). \end{cases}$$

Moreover, this brand-new restriction principle is optimal in the sense that if $n = \lambda > \kappa > 0$ then the iff-statement fails. Quite remarkably, such an optimization confirms affirmatively the conjecture in [7, Remark 3.3]: if

$$\alpha < \alpha p < \kappa < \lambda = n$$
 & $q = p\beta/(\kappa - \alpha p)$

then there is no continuity of $I_{\alpha}: L^{p,\kappa} \to L^{q,n}_{\mu}$ for an arbitrary Radon measure μ with $\|\|\mu\|\|_{\beta} < \infty$. © 2017 Elsevier Inc. All rights reserved.

 $^{^{*}}$ L.L. was supported by the National Natural Science Foundation of China (No. 11471042); J.X. was supported by NSERC of Canada (FOAPAL # 202979463102000).

^{*} Corresponding author. E-mail addresses: liuliguang@ruc.edu.cn (L. Liu), jxiao@mun.ca (J. Xiao).

http://dx.doi.org/10.1016/j.jde.2017.02.003

^{0022-0396/© 2017} Elsevier Inc. All rights reserved.

MSC: 31C40; 35K05; 42B35; 46E35

Keywords: Riesz-Morrey-Hardy potential; Morrey-Radon space; Strong restriction principle

1

1. Introduction

A weak restriction theorem for Riesz–Morrey potentials due to Adams (see [2, Theorem 5.1] for $\lambda = \kappa$) and Xiao (see [32, Lemma 2.1] for $\lambda < \kappa$) states that if

$$\begin{array}{l}
0 < \lambda \leq \kappa \leq n; \\
0 < \alpha < n; \\
1 \leq p < \kappa/\alpha; \\
n - \alpha p < \beta \leq n; \\
0 < q = p(\beta + \lambda - n)/(\kappa - \alpha p),
\end{array}$$

then the Riesz operator I_{α} , as a non-trivial extension of the Newtonian or electrostatic potential in universal gravitation, continuously maps the Morrey space $L^{p,\kappa}$ to the weak Morrey–Radon space $L^{q,\lambda}_{\mu,\infty}$ when and only when

$$\|\|\mu\|\|_{\beta} \equiv \sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)} r^{-\beta}\mu\big(B(x,r)\big) < \infty.$$

Here and henceforth, B(x, r) is the $1 \le n$ -dimensional Euclidean open ball with center $x \in \mathbb{R}^n$ and radius $r \in (0, \infty)$. Also, for $(q, \lambda) \in [1, \infty) \times (0, n]$ and a (nonnegative) Radon measure μ on \mathbb{R}^n , the weak Morrey–Radon space $L^{q,\lambda}_{\mu,\infty}$ consists of all μ -measurable functions f with

$$\|f\|_{L^{q,\lambda}_{\mu,\infty}} \equiv \sup_{(x,r,t)\in\mathbb{R}^n\times(0,\infty)\times(0,\infty)} \left(r^{\lambda-n}t^q\mu\left(\{y\in B(x,r):|f(y)|>t\}\right)\right)^{\frac{1}{q}} < \infty.$$

Naturally, as a subspace of $L^{q,\lambda}_{\mu,\infty}$, the symbol $L^{q,\lambda}_{\mu}$ expresses the Morrey–Radon space of all μ -measurable functions f in \mathbb{R}^n with

$$\|f\|_{L^{q,\lambda}_{\mu}} \equiv \sup_{(x,r)\in\mathbb{R}^n\times(0,\infty)} \left(r^{\lambda-n}\int\limits_{B(x,r)} |f|^q \, d\mu\right)^{\frac{1}{q}} < \infty.$$

Especially, if μ is just the *n*-dimensional Lebesgue measure ν and

$$(q, \lambda) = (p, \kappa) \in [1, \infty) \times (0, n)$$

then $L^{q,\lambda}_{\mu}$ will be simply written as the classical Morrey space $L^{p,\kappa}$ whose specialty $L^{p,n}$ coincides with the Lebesgue space L^p over \mathbb{R}^n . Moreover, given $\alpha \in (0, n)$ the Riesz operator I_{α} acting on a Lebesgue ν -measurable function f in \mathbb{R}^n is determined by Download English Version:

https://daneshyari.com/en/article/5774278

Download Persian Version:

https://daneshyari.com/article/5774278

Daneshyari.com