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Abstract

We introduce new lower bounds for the fractional Fisher information. Equipped with these bounds we 
study a hyperbolic–parabolic model of chemotaxis and prove the global existence of solutions in certain 
dissipation regimes.
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1. Introduction

In this note we study the following system of partial differential equations{
∂tu = −μ�αu + ∂x(uq),

∂tq = ∂xf (u),
for x ∈ T, t ≥ 0, (1)

where T denotes the 1-dimensional torus, f is a smooth function, �α = (−�)α/2 denotes the 
fractional Laplacian with 0 < α ≤ 2 (see Appendix A for the expression as a singular integral 
and some properties) and μ ≥ 0 is a fixed constant.
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This system was proposed by Othmers & Stevens [57] (see also Levine, Sleeman, Brian & 
Nilsen-Hamilton [39]) based on biological considerations as a model of the formation of new 
blood vessels from pre-existing blood vessels (in a process that is called tumor angiogenesis). In 
particular, in the previous system, u is the density of vascular endothelial cells and q = ∂x log(v)

where v is the concentration of the signal protein known as vascular endothelial growth factor 
(VEGF). As f comes from the chemical kinetics of the system, it is commonly referred to as 
the kinetic function. The interested reader can refer to Bellomo, Li, & Maini [4] for a detailed 
exposition on tumor modelling. In the case where f (u) = u2/2, equation (1) also appears as a vis-
cous regularization of the dispersionless Majda–Biello model of the interaction of barotropic and 
equatorial baroclinic Rossby waves [50]. Another related model is the magnetohydrodynamic-
Burgers system proposed by Fleischer & Diamond [27] (see also Jin, Wang & Xiong [36] and 
the references therein).

We address the existence of solutions and their qualitative properties in the case 0 < α < 2. In 
particular, among other results, we prove the global existence of weak solutions for f (u) = ur/r , 
1 ≤ r ≤ 2 and α > 2 −r . This topic is mathematically challenging due to the hyperbolic character 
of the equation for q . Indeed, at least formally, the velocity q is one derivative less regular than u. 
So, the term ∂x(uq) is two derivatives less regular than u. This suggests that the diffusion given 
by the Laplacian (α = 2) is somehow critical.

The main tool to achieve the results is a set of new inequalities for the generalized Fisher 
information (see [61] for a similar functional)

Iα =
∫
T

(−�)α/2u�(u)dx, (2)

where � is a smooth increasing function. This functional is a generalization of the classical Fisher 
information (also known as Linnik functional)

I2 =
∫
T

−�u log(u)dx, (3)

introduced in Fisher [26] (see also Linnik [48], McKean [51], Toscani [59,60], Villani [62]). 
The Fisher information appears commonly as the rate at which the Shannon’s entropy1 [56] (or, 
equivalently, the Boltzmann’s H function)

S =
∫
T

u log(u)dx, (4)

is dissipated by diffusive semigroups as, for instance, the semigroup generated by the linear heat 
equation.

1 To be completely precise, the original Shannon’s entropy is −S and not S itself.
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