ARTICLE IN PRESS

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:856

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion

Alessia E. Kogoj

Dipartimento di Ingegneria dell'Informazione, Ingegneria Elettrica e Matematica Applicata, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, IT-84084 Fisciano (SA), Italy

Received 22 June 2016

Abstract

We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron–Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan. © 2016 Elsevier Inc. All rights reserved.

MSC: 35H10; 35K70; 35K65; 31D05; 35D99; 35J25

Keywords: Dirichlet problem; Perron–Wiener solution; Boundary behavior of Perron–Wiener solutions; Exterior cone criterion; Hypoelliptic operators; Potential theory

1. Introduction

The aim of this paper is to prove the existence of a generalized solution in the sense of Perron– Wiener to the Dirichlet problem and to provide a sufficient condition for the regularity of the boundary points for a wide class of evolution equations.

More precisely, we consider second order partial differential operators of the following type

E-mail address: akogoj@unisa.it.

http://dx.doi.org/10.1016/j.jde.2016.10.018 0022-0396/© 2016 Elsevier Inc. All rights reserved.

Please cite this article in press as: A.E. Kogoj, On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.10.018

ARTICLE IN PRESS

2

A.E. Kogoj / J. Differential Equations ••• (••••) •••-•••

$$\mathcal{L} = \sum_{i,j=1}^{N} a_{ij}(z)\partial_{x_i x_j} + \sum_{i=1}^{N} b_i(z)\partial_{x_i} - \partial_t, \qquad (1)$$

in a strip

$$S = \{ z = (x, t) \in \mathbb{R}^{N+1} \mid x \in \mathbb{R}^N, \ T_1 < t < T_2 \},\$$

with $-\infty \leq T_1 < T_2 \leq +\infty$.

The coefficients $a_{ij} = a_{ji}$ and b_i are smooth and the characteristic form of the operator is nonnegative definite and non-totally degenerate, i.e.,

$$\sum_{i,j=1}^{N} a_{ij}(z)\xi_i\xi_j \ge 0, \qquad \forall z \in S, \ \forall \xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^N,$$

and

$$\sum_{i=1}^{N} a_{ii}(z) > 0 \qquad \forall z \in S.$$

Finally, we assume the *hypoellipticity* of $\mathcal{L} - \beta$ and of \mathcal{L}^* , for every constant $\beta \ge 0$, and the existence of a well-behaved *fundamental solution* Γ for \mathcal{L} ,

$$(z,\zeta) \mapsto \Gamma(z,\zeta),$$

satisfying the following properties:

- (i) $\Gamma(\cdot, \zeta)$ belongs to $L^1_{\text{loc}}(S)$ and $\mathcal{L}(\Gamma(\cdot, \zeta)) = -\delta_{\zeta}$, where δ_{ζ} denotes the Dirac measure at $\{\zeta\}$, for every $\zeta \in S$.
- (ii) For every $\varphi \in C_0^{\infty}(\mathbb{R}^N)$ and for every $(x_0, \tau) \in S$,

$$\int_{\mathbb{R}^N} \Gamma(x, t, \xi, \tau) \varphi(\xi) \ d\xi \to \varphi(x_0), \quad \text{ as } (x, t) \to (x_0, \tau), \ t > \tau$$

- (iii) $\Gamma \in C^{\infty} \Big(\{ (z, \zeta) \in \mathbb{R}^{N+1} \times \mathbb{R}^{N+1} \mid z \neq \zeta \} \Big).$
- (iv) $\Gamma \ge 0$ and $\Gamma(x, t, \xi, \tau) > 0$ if and only if $t > \tau$. Moreover, for every fixed $z \in S$, $\limsup_{\xi \to z} \Gamma(z, \zeta) = \infty$.
- (v) $\Gamma(z,\zeta) \to 0$ for $\zeta \to \infty$ uniformly for $z \in K$, compact set of *S*, and, analogously, $\Gamma(z,\zeta) \to 0$ for $z \to \infty$ uniformly for $\zeta \in K$, compact set of *S*.
- (vi) $\exists C > 0$ such that for any $z = (x, t) \in S$ we have

$$\int_{\mathbb{R}^N} \Gamma(z;\xi,\tau) \ d\xi \leq C \quad \text{if} \quad t > \tau.$$

Please cite this article in press as: A.E. Kogoj, On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.10.018 Download English Version:

https://daneshyari.com/en/article/5774311

Download Persian Version:

https://daneshyari.com/article/5774311

Daneshyari.com