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Abstract

The aim of the paper is to establish optimal stability estimates for the determination of sound-hard polyhe-
dral scatterers in RN , N ≥ 2, by a minimal number of far-field measurements. This work is a significant and 
highly nontrivial extension of the stability estimates for the determination of sound-soft polyhedral scatter-
ers by far-field measurements, proved by one of the authors, to the much more challenging sound-hard case.

The admissible polyhedral scatterers satisfy minimal a priori assumptions of Lipschitz type and may 
include at the same time solid obstacles and screen-type components. In this case we obtain a stability 
estimate with N far-field measurements. Important features of such an estimate are that we have an explicit 
dependence on the parameter h representing the minimal size of the cells forming the boundaries of the 
admissible polyhedral scatterers, and that the modulus of continuity, provided the error is small enough with 
respect to h, does not depend on h. If we restrict to N = 2, 3 and to polyhedral obstacles, that is to polyhedra, 
then we obtain stability estimates with fewer measurements, namely first with N −1 measurements and then 
with a single measurement. In this case the dependence on h is not explicit anymore and the modulus of 
continuity depends on h as well.
© 2016 Elsevier Inc. All rights reserved.

MSC: primary 74J20, 74J25; secondary 35R30, 35Q74

Keywords: Inverse scattering; Polyhedral scatterers; Sound-hard; Stability; Reflection principle

* Corresponding author.
E-mail addresses: hongyuliu@hkbu.edu.hk (H. Liu), mpetrini139@yahoo.it (M. Petrini), rondi@units.it (L. Rondi), 

xiaojn@live.com (J. Xiao).

http://dx.doi.org/10.1016/j.jde.2016.10.021
0022-0396/© 2016 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jde.2016.10.021
http://www.elsevier.com/locate/jde
mailto:hongyuliu@hkbu.edu.hk
mailto:mpetrini139@yahoo.it
mailto:rondi@units.it
mailto:xiaojn@live.com
http://dx.doi.org/10.1016/j.jde.2016.10.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2016.10.021&domain=pdf


1632 H. Liu et al. / J. Differential Equations 262 (2017) 1631–1670

1. Introduction

A set � ⊂R
N , N ≥ 2, is called a scatterer if it is a compact set such that RN\� is connected. 

A scatterer is said to be an obstacle if it is the closure of an open set and it is said to be a screen 
if its interior is empty.

If an incident time-harmonic acoustic wave encounters a scatterer then it is perturbed through 
the creation of a scattered or reflected wave. The total wave is given by the superposition of 
the incident and the scattered wave and it is characterized by the total field u, solution to the 
following exterior boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u + k2u = 0 in R
N\�

u = ui + us in R
N\�

B.C. on ∂�

lim
r→∞ r(N−1)/2

(
∂us

∂r
− ikus

)
= 0 r = ‖x‖.

Here k > 0 in the reduced wave equation, or Helmholtz equation, is the wavenumber and ui is the 
incident field, that is the field of the incident wave. The incident field is usually an entire solution 
of the Helmholtz equation, here we shall always assume that the incident wave is a time-harmonic 
plane wave with direction of propagation v ∈ S

N−1, that is ui(x) = eikx·v , x ∈ R
N . Instead us

is the scattered field, that is the field of the scattered wave. The last limit is the Sommerfeld 
radiation condition and corresponds to the fact that the scattered wave is radiating. Moreover it 
implies that the scattered field has the following asymptotic behavior

us(x) = eik‖x‖

‖x‖(N−1)/2

{
u∞(x̂) + O

(
1

‖x‖
)}

,

where x̂ = x/‖x‖ ∈ S
N−1 and u∞ is the so-called far-field pattern of us . We shall also write 

u∞(x̂; �, k, v) to specify its dependence on the observation direction x̂ ∈ S
N−1, the scatterer �, 

the wavenumber k > 0 and the direction of propagation of the incident field v ∈ S
N−1.

Finally, the boundary condition on the boundary of � depends on the physical properties of 
the scatterer �. If � is sound-soft, then u satisfies a homogeneous Dirichlet condition whereas if 
� is sound-hard we have a homogeneous Neumann condition. We remark that other conditions 
such as the impedance boundary condition or transmission conditions for penetrable scatterers 
may be of interest for the applications.

The inverse scattering problem consists of recovering the scatterer � by its corresponding 
far-field measurements for one or more incident waves. Such an inverse problem is of fundamen-
tal importance to many areas of science and technology including radar and sonar applications, 
geophysical exploration, medical imaging and nondestructive testing. For a general introduction 
on this inverse problem see for instance [4,12].

Physically, a far-field measurement is obtained by sending an incident plane wave and mea-
suring the scattered wave field faraway at every possible observation directions, namely by 
measuring the far-field pattern u∞ of us .

If we measure the far-field pattern for just one incident plane wave, then we say that we 
use a single far-field measurement. We can obtain multiple far-field measurements by sending 
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