

Available online at www.sciencedirect.com

Journal of **Differential** Equations

[J. Differential Equations 262 \(2017\) 1671–1689](http://dx.doi.org/10.1016/j.jde.2016.10.020)

www.elsevier.com/locate/jde

Instability of solitary wave solutions for derivative nonlinear Schrödinger equation in endpoint case

Cui Ning ^{a,∗}, Masahito Ohta ^b, Yifei Wu ^c

^a *School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, PR China* ^b *Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjukuku, Tokyo 162-8601, Japan* ^c *Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China*

Received 24 March 2016; revised 16 August 2016

Available online 3 November 2016

Abstract

We study the stability theory of solitary wave solutions for a type of the derivative nonlinear Schrödinger equation

$$
i\partial_t u + \partial_x^2 u + i|u|^2 \partial_x u + b|u|^4 u = 0.
$$

The equation has a two-parameter family of solitary wave solutions of the form

$$
e^{i\omega_0 t+i\frac{\omega_1}{2}(x-\omega_1 t)-\frac{i}{4}\int_{-\infty}^{x-\omega_1 t}|\varphi_{\omega}(\eta)|^2 d\eta}\varphi_{\omega}(x-\omega_1 t).
$$

The stability theory in the frequency region of $|\omega_1| < 2\sqrt{\omega_0}$ was studied previously. In this paper, we prove the instability of the solitary wave solutions in the endpoint case $\omega_1 = 2\sqrt{\omega_0}$, in which the elliptic equation of *ϕω* is "zero mass".

© 2016 Elsevier Inc. All rights reserved.

Keywords: Derivative NLS; Orbital instability; Solitary wave solutions

Corresponding author. *E-mail addresses:* ningcui2013@126.com (C. Ning), mohta@rs.tus.ac.jp (M. Ohta), yerfmath@gmail.com (Y. Wu).

<http://dx.doi.org/10.1016/j.jde.2016.10.020> 0022-0396/© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the stability theory of solitary wave solutions for the derivative nonlinear Schrödinger equation:

$$
i\partial_t u + \partial_x^2 u + i|u|^2 \partial_x u + b|u|^4 u = 0, \qquad t \in \mathbb{R}, x \in \mathbb{R},
$$
 (1.1)

where *b* > 0. It describes an Alfvén wave and appears in plasma physics, nonlinear optics, and so on (see [\[16,17\]\)](#page--1-0). When $b = 0$, by a suitable gauge transformation, (1.1) is transformed to the standard derivative nonlinear Schrödinger equation:

$$
i\partial_t u + \partial_x^2 u + i\partial_x (|u|^2 u) = 0.
$$
 (1.2)

It was proved in $[9-11,19]$ that the Cauchy problem for (1.1) or (1.2) is locally well-posed in the energy space $H^1(\mathbb{R})$. See also [\[5,22,23,20,21,1\]](#page--1-0) for some of the previous or extended results. Furthermore, it was proved in [\[25\]](#page--1-0) that (1.2) is globally well-posed in the energy space $H^1(\mathbb{R})$ when the initial data satisfies $||u_0||_{L^2} < 2\sqrt{\pi}$. See [\[3,4,7,8,11,15,19,24\]](#page--1-0) for the related results. See also [\[13,14\]](#page--1-0) for the stability results on the generalized derivative nonlinear Schrödinger equation.

The solution $u(t)$ of (1.1) satisfies three conservation laws

$$
E(u(t)) = E(u_0), P(u(t)) = P(u_0), M(u(t)) = M(u_0)
$$

for all $t \in [0, T_{max})$, where

$$
E(u(t)) = \frac{1}{2} ||\partial_x u||_{L^2}^2 - \frac{1}{4} (i |u|^2 \partial_x u, u)_{L^2} - \frac{b}{6} ||u||_{L^6}^6,
$$

\n
$$
P(u(t)) = \frac{1}{2} (i \partial_x u, u)_{L^2},
$$

\n
$$
M(u(t)) = \frac{1}{2} ||u||_{L^2}^2.
$$

It is known (see for examples $[6,2,25]$) that (1.2) has a two-parameter family of solitary wave solutions of the form:

$$
\widetilde{u}_{\omega}(t,x) = e^{i\omega_0 t + i\frac{\omega_1}{2}(x-\omega_1 t) - \frac{3}{4}i\int_{-\infty}^{x-\omega_1 t} |\widetilde{\varphi}_{\omega}(\eta)|^2 d\eta} \widetilde{\varphi}_{\omega}(x-\omega_1 t),
$$

where $\omega = (\omega_0, \omega_1) \in \Omega := \{(\omega_0, \omega_1) \in \mathbb{R}^+ \times \mathbb{R} : \omega_1^2 \leq 4\omega_0\}$, and $\widetilde{\varphi}_\omega$ is the solution of

$$
-\partial_x^2 \varphi + (\omega_0 - \frac{\omega_1^2}{4})\varphi + \frac{\omega_1}{2}|\varphi|^2 \varphi - \frac{3}{16}|\varphi|^4 \varphi = 0.
$$

In [\[2\],](#page--1-0) Colin and Ohta proved that $\tilde{u}_{\omega}(t, x)$ is stable when $\omega_1^2 < 4\omega_0$. See also [\[6\]](#page--1-0) for the case when $\omega_1 < 0$ and $\omega_1^2 < 4\omega_0$. The stability theory on the endpoint case $\omega_1^2 = 4\omega_0$ remains open.

When $b > 0$, (1.1) has a two-parameter family of solitary wave solutions of the form:

$$
u_{\omega}(t,x) = e^{i\omega_0 t + i\frac{\omega_1}{2}(x-\omega_1 t) - \frac{i}{4}\int_{-\infty}^{x-\omega_1 t} |\varphi_{\omega}(\eta)|^2 d\eta} \varphi_{\omega}(x-\omega_1 t),
$$
\n(1.3)

Download English Version:

<https://daneshyari.com/en/article/5774317>

Download Persian Version:

<https://daneshyari.com/article/5774317>

[Daneshyari.com](https://daneshyari.com)