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Abstract

The well-posedness of nonsmooth differential-algebraic equations (DAEs) is investigated. More specifi-
cally, semi-explicit DAEs with Carathéodory-style assumptions on the differential right-hand side functions 
and local Lipschitz continuity assumptions on the algebraic equations. The DAEs are classified as having 
differential index one in a generalized sense; solution regularity is formulated in terms of projections of gen-
eralized (Clarke) Jacobians. Existence of solutions is derived under consistency and regularity of the initial 
data. Uniqueness of a solution is guaranteed under analogous Carathéodory ordinary-differential equation 
uniqueness assumptions. The continuation of solutions is established and sufficient conditions for contin-
uous and Lipschitzian parametric dependence of solutions are also provided. To accomplish these results, 
a theoretical tool for analyzing nonsmooth DAEs is provided in the form of an extended nonsmooth implicit 
function theorem. The findings here are a natural extension of classical results and lay the foundation for 
further theoretical and computational analyses of nonsmooth DAEs.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The focus of this article is to analyze the well-posedness of Carathéodory semi-explicit DAE 
systems. Namely, the following initial-value problem (IVP) in semi-explicit DAEs:

ẋ(t,p) = f(t,p,x(t,p),y(t,p)), (1a)

0ny = g(t,p,x(t,p),y(t,p)), (1b)

x(t0,p) = f0(p), (1c)

in which t is the independent variable; p is a vector of the problem parameters; x are the dif-
ferential state variables; y are the algebraic state variables; and the right-hand side functions 
f : D → R

nx and g : D → R
ny are nonsmooth mappings. Here D ⊂ R × R

np × R
nx × R

ny is 
open and connected where np, nx, ny are positive integers. The function f0, which maps the 
projection πpD (i.e., D onto Rnp ) to the projection πxD, may also be nonsmooth.

Example 1.1. Consider the following IVP in semi-explicit DAEs:

ẋ(t,p) = sign(t − 0.5) + (1.5|1 − ηy | 1
3 − 1)H(t − 1), (2a)

0 = |x(t,p)| + |y(t,p)| − 1, (2b)

x(t0,p) = min{0,p}, (2c)

where sign(·) and H(·) denote the signum and Heaviside functions, respectively. Suppose that 
t0 := 0 is prescribed and consider the following mappings:

z† ≡ (x†, y†) : [0,1] × {−0.5} →R
2 : (t,p) �→

{
(−t − 0.5,0.5 − t), if t ∈ [0,0.5],
(t − 1.5, t − 0.5), if t ∈ (0.5,1],

and

z† ≡ (x†, y†) : [0,1] × {−0.5} → R
2 : (t,p) �→

{
(−t − 0.5,0.5 − t), if t ∈ [0,0.5],
(t − 1.5,0.5 − t), if t ∈ (0.5,1].

The mappings z† and z† both pass through the point (t0, p0, x0, y0) := (0, −0.5, −0.5, 0.5). Ob-
serve that z†(·, −0.5) and z†(·, −0.5) both satisfy (2a) for almost every t ∈ [0, 1], (2b) for all 
t ∈ [0, 1], and (2c) at t = t0. See Fig. 1 for an illustration.

DAEs provide a natural framework for the dynamic modeling and simulation of a wide 
range of engineering applications found in network modeling, mechanical multibody systems, 
constrained variational problems, and fluid dynamics (see [1,2] and the references therein). 
Nonsmoothness is an inherent feature of dynamic models of chemical processes [3]. For exam-
ple, sources of nonsmoothness in campaign continuous pharmaceutical manufacturing include 
thermodynamic phase changes (e.g., flash evaporation, liquid-liquid extraction), flow transitions 
(e.g., laminar-turbulent-choked transitions), flow control devices (e.g., nonreturn valves, weirs), 
crystallization kinetics that vary whether the solution is supersaturated or unsaturated, etc. [4–6]. 
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