

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 262 (2017) 2745-2770

www.elsevier.com/locate/jde

Asymptotic behavior of gradient-like dynamical systems involving inertia and multiscale aspects

Hedy Attouch *,1, Marc-Olivier Czarnecki

Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier cedex 5, France

Received 1 February 2016; revised 5 November 2016

Available online 22 November 2016

Abstract

In a Hilbert space \mathbb{H} , we study the asymptotic behavior, as time variable t goes to $+\infty$, of nonautonomous gradient-like dynamical systems involving inertia and multiscale features. Given $\Phi: \mathbb{H} \to \mathbb{R}$ and $\Psi: \mathbb{H} \to \mathbb{R}$ two convex differentiable functions, γ a positive damping parameter, and $\epsilon(t)$ a function of t which tends to zero as t goes to $+\infty$, we consider the second-order differential equation

$$\ddot{x}(t) + \gamma \dot{x}(t) + \nabla \Phi(x(t)) + \epsilon(t) \nabla \Psi(x(t)) = 0.$$

This system models the emergence of various collective behaviors in game theory, as well as the asymptotic control of coupled nonlinear oscillators. Assuming that $\epsilon(t)$ tends to zero moderately slowly as t goes to infinity, we show that the trajectories converge weakly in \mathbb{H} . The limiting equilibria are solutions of the hierarchical minimization problem which consists in minimizing Ψ over the set C of minimizers of Φ . As key assumptions, we suppose that $\int_0^{+\infty} \epsilon(t) dt = +\infty$ and that, for every p belonging to a convex cone C depending on the data Φ and Ψ

$$\int\limits_{0}^{+\infty} \left[\Phi^{*}\left(\epsilon(t)p\right) - \sigma_{C}\left(\epsilon(t)p\right) \right] dt < +\infty$$

E-mail addresses: hedy.attouch@univ-montp2.fr (H. Attouch), marc-olivier.czarnecki@univ-montp2.fr (M.-O. Czarnecki).

^{*} Corresponding author.

¹ H. Attouch: with the support of ECOS grant C13E03. Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number F49550-1 5-1-0500.

where Φ^* is the Fenchel conjugate of Φ , and σ_C is the support function of C. An application is given to coupled oscillators.

© 2016 Elsevier Inc. All rights reserved.

MSC: 37N40; 46N10; 49M30; 65K05; 65K10; 90B50; 90C25

Keywords: Asymptotic control; Convex optimization; Hierarchical minimization; Inertial gradient dynamics; Lyapunov analysis; Weakly coupled wave equations

1. Introduction

 \mathbb{H} is a real Hilbert space, we write $||x||^2 = \langle x, x \rangle$ for $x \in \mathbb{H}$. For any differentiable function $F : \mathbb{H} \to \mathbb{R}$, its gradient is denoted by ∇F . Thus $F'(x)(y) = \langle \nabla F(x), y \rangle$. The first order (respectively second order) derivative at time t of a function $x(\cdot) : [0, +\infty[\to \mathbb{H}]$ is denoted by $\dot{x}(t)$ (respectively $\ddot{x}(t)$). Throughout the paper γ is a fixed positive parameter (viscous damping coefficient).

1.1. Problem statement

Henceforth, we make the following standing assumptions (\mathcal{H}_0) on data Φ , Ψ and $\epsilon(\cdot)$, that will be needed throughout the paper. We write $S = \operatorname{argmin}_C \Psi$ with $C = \operatorname{argmin}_\Phi$, or, equivalently, $S = \operatorname{argmin}_\Phi \{\Psi | \operatorname{argmin}_\Phi \}$.

We study the asymptotic behavior $(t \to +\infty)$ of the trajectories of the nonautonomous Multiscaled Inertial Gradient-like system ((MIG) for short)

$$\ddot{x}(t) + \gamma \dot{x}(t) + \nabla \Phi(x(t)) + \epsilon(t) \nabla \Psi(x(t)) = 0.$$
 (MIG)

We want to give sufficient conditions on $\epsilon(\cdot)$ (typically slow decay to zero as $t \to +\infty$) ensuring that each trajectory of (MIG) asymptotically converges (as $t \to +\infty$) to a minimizer of Φ , which also minimizes Ψ over all minima of Φ . It is an asymptotic hierarchical minimization property.

Let us observe that when $\Psi \equiv 0$, or $\epsilon = 0$, the above dynamic reduces to

$$\ddot{x}(t) + \gamma \dot{x}(t) + \nabla \Phi(x(t)) = 0. \tag{HBF}$$

The Heavy Ball with Friction dynamical system, (HBF) for short, plays an important role in mechanics, control theory, and optimization, see [1,5,10,18,20] for a general presentation. Because

Download English Version:

https://daneshyari.com/en/article/5774353

Download Persian Version:

https://daneshyari.com/article/5774353

<u>Daneshyari.com</u>