J. Math. Anal. Appl. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet - \bullet \bullet \bullet$

Contents lists available at ScienceDirect

www.elsevier.com/locate/jmaa

Journal of Mathematical Analysis and Applications

Self-contracted curves in Riemannian manifolds

Aris Daniilidis $^{\rm a,*,1},$ Robert Deville $^{\rm b,2},$ Estibalitz Durand-Cartagena $^{\rm c,3},$ Ludovic Rifford $^{\rm d,e,4}$

- ^a DIM-CMM, UMI CNRS 2807, Beauchef 581, Torre Norte, piso 5, Universidad de Chile, Santiago 8370456, Chile
- b Laboratoire Bordelais d'Analyse et Geométrie, Institut de Mathématiques de Bordeaux, Université de Bordeaux 1, 351 cours de la Libération, Talence Cedex 33405, France
- ^c Departamento de Matemática Aplicada, ETSI Industriales, UNED, Juan del Rosal 12, Ciudad Universitaria, 28040 Madrid, Spain
- ^d CMM, UMI CNRS 2807, Blanco Encalada 2120, Universidad de Chile, Santiago, Chile⁵
- ^e Laboratoire J.A. Dieudonné, UMR CNRS 7351, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France

ARTICLE INFO

ABSTRACT

Article history: Received 23 November 2016 Available online xxxx Submitted by H. Frankowska

Keywords: Self-contracted curve Self-expanded curve Rectifiable curve Length Secant Riemannian manifold It is established that every self-contracted curve in a Riemannian manifold has finite length, provided its image is contained in a compact set.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introd	luction	2
2.	Main	result	3
	2.1.	Statement of the main result	3
	2.2.	Notation and sketch of the proof	3

E-mail addresses: arisd@dim.uchile.cl (A. Daniilidis), Robert.Deville@math.u-bordeaux1.fr (R. Deville), edurand@ind.uned.es (E. Durand-Cartagena), ludovic.rifford@math.cnrs.fr (L. Rifford).

 $URLs: \text{http://www.dim.uchile.cl/}\sim arisd (A. Daniilidis), \text{http://www.uned.es/personal/edurand}$ (E. Durand-Cartagena), $\text{http://math.unice.fr/}\sim rifford/$ (L. Rifford).

- 1 Research supported by the grants: BASAL PFB-03, FONDECYT 1130176, ECOS-CONICYT C14E06, REDES/CONICYT 150040 (Chile) and MTM2014-59179-C2-1-P (MINECO of Spain and ERDF of EU).
- 2 Research supported by the grants: ECOS-SUD C14E06 (France) and REDES/CONICYT-150040 (Chile).
- Research supported by the grant MTM2015-65825-P (MINECO of Spain) and 2017-MAT12 (ETSI Industriales, UNED).
- $^4\,$ Research supported by the grant REDES/CONICYT-150040 (Chile).
- ⁵ Visiting Researcher.

http://dx.doi.org/10.1016/j.jmaa.2017.04.011

0022-247X/© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

A. Daniilidis et al. / J. Math. Anal. Appl. • • • (• • • •) • • • - • •

	2.3.	Exponential map – cosine law – external functions	Ė
3.	Geome	etrical description of self-contracted maps	7
	3.1.	Dealing with discontinuities	7
	3.2.	Describing backward secants	3
	3.3.	Aperture of the truncated tail)
		3.3.1. Left-continuous case)
		3.3.2. Left-discontinuous case)
		Estimations involving "almost secants"	
4.		of the main result	
	4.1.	Width estimates via external functions	j
	4.2.	Proof of finite length	3
Refere	ences .)

1. Introduction

2

This work is devoted to the study of self-contracted curves on Riemannian manifolds \mathcal{M} .

Definition 1.1 (Self-contracted curve). Let \mathcal{M} be a Riemannian manifold and let d_g denote its geodesic distance. Given an interval $I = [0, T_{\infty})$ with $T_{\infty} \in (0, \infty) \cup \{\infty\}$, a curve $\gamma : I \to \mathcal{M}$ is called self-contracted, if for every $t_1 \leq t_2 \leq t_3$ in I we have

$$d_g(\gamma(t_1), \gamma(t_3)) \ge d_g(\gamma(t_2), \gamma(t_3)). \tag{1.1}$$

In other words, for every $\tau \in [0, T_{\infty})$ the function $t \mapsto d_g(\gamma(t), \gamma(\tau))$ is nonincreasing on $[0, \tau]$.

Self-contracted curves were introduced in [3, Definition 1.2.]. The motivation of this definition comes from the following example.

Example 1.2. If $f: \mathbb{R}^n \to \mathbb{R}^+$ is a \mathcal{C}^1 -smooth convex function and if $\gamma: (0, +\infty) \to \mathbb{R}^n$ is smooth and satisfies $\gamma'(t) = -\nabla f(\gamma(t))$ for all t > 0, then γ is a self-contracted curve.

Indeed, observe first that $(f(\gamma(t)))' = -\|\nabla f(\gamma(t))\|^2 \le 0$, thus the function $t \mapsto f(\gamma(t))$ is nonincreasing. Therefore, since f is convex, if $\tau \ge t$, then

$$\frac{d}{dt} \left(\frac{1}{2} \| \gamma(\tau) - \gamma(t) \|^2 \right) = \langle \gamma(\tau) - \gamma(t), \nabla f(\gamma(t)) \rangle \le f(\gamma(\tau)) - f(\gamma(t)) \le 0.$$

This proves that the function $t \mapsto ||\gamma(t) - \gamma(\tau)||$ is nonincreasing on $[0, \tau]$.

One of the main interests in studying self-contracted curves lies in its applications. Rectifiability of self-contracted curves has been applied in different areas, including continuous and discrete dynamical systems, optimization and convergence of algorithms. See for example [3] and [4].

The definition of self-contractedness is purely metric: if φ is a nondecreasing function from an interval J onto I, then $\gamma \circ \varphi$ is also self-contracted, so this notion does not depend on the particular parametrization of the oriented graph $\{\gamma(t); t \in I\}$. Self-contractedness does not require prior smoothness or continuity assumption on the curve as shown by the following example.

Example 1.3. Let $\gamma : \mathbb{R} \to \mathbb{C}$ defined by $\gamma(t) = t$ if $t \le -1$, $\gamma(t) = -t$ if $-1 < t \le 0$ and $\gamma(t) = it$ if t > 0. The curve γ is self-contracted, is not smooth at t = 0, is discontinuous at t = -1, and moreover does not admit a continuous self-contracted extension, *i.e.* there exists no continuous self-contracted curve $\Gamma : \mathbb{R} \to \mathbb{C}$ such that $\{\Gamma(t) : t \in \mathbb{R}\} \supset \{\gamma(t) : t \in \mathbb{R}\}$.

In a Euclidean setting it has been established in [4, Section 3] (and independently in [8] for continuous curves) that bounded self-contracted curves have finite length. In both cases the proof was based on an old

Please cite this article in press as: A. Daniilidis et al., Self-contracted curves in Riemannian manifolds, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.04.011

Download English Version:

https://daneshyari.com/en/article/5774399

Download Persian Version:

https://daneshyari.com/article/5774399

<u>Daneshyari.com</u>