Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Adjoint of the Toeplitz operator with the singular inner function

Kei Ji Izuchi^{a,1}, Kou Hei Izuchi^{b,*}, Yuko Izuchi^c

^a Department of Mathematics, Niigata University, Niigata 950-2181, Japan

^b Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan

^c Asahidori 2-2-23, Yamaguchi 753-0051, Japan

ARTICLE INFO

Article history: Received 17 August 2016 Available online 21 March 2017 Submitted by R.M. Aron

Keywords: Invariant subspace problem Hardy space Toeplitz operator Backward shift invariant subspace Inner function

ABSTRACT

Let ψ_{δ_1} be the singular inner function associated with the unit point mass at z = 1. We shall give an infinite dimensional closed subspace M of ker $T^*_{\psi_{\delta_1}}$, the kernel of the adjoint of the Toeplitz operator $T_{\psi_{\delta_1}}$, satisfying that for every nonzero v in M, the smallest backward shift invariant subspace of H^2 containing v coincides with ker $T^*_{\psi_{\delta_1}}$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let H^2 be the Hardy space on the open unit disk \mathbb{D} with variable z and L^2 the space of square integrable functions on the unit circle \mathbb{T} with respect to the Lebesgue measure on \mathbb{T} . For a function f in H^2 , we identify f with its boundary function on \mathbb{T} , so we also think of H^2 as $H^2 \subset L^2$. A function θ in H^2 is said to be inner if $|\theta| = 1$ a.e. on \mathbb{T} . We identify an inner function θ with $c\theta$ for every $c \in \mathbb{C}$ with |c| = 1, so $\theta_1 \neq \theta_2$ means $\theta_1 H^2 \neq \theta_2 H^2$.

We denote by P the orthogonal projection on L^2 onto H^2 . For $\varphi \in L^{\infty}$, the space of bounded functions in L^2 , the Toeplitz operator on H^2 is defined by $T_{\varphi}f = P(\varphi f), f \in H^2$. Put ker $T_{\varphi} = \{f \in H^2 : T_{\varphi}f = 0\}$. We have $T_{\varphi}^* = T_{\overline{\varphi}}$, and ker $T_{\theta}^* = H^2 \ominus \theta H^2$ for every inner function θ . A closed subspace N of H^2 is said to be backward shift invariant if $T_z^*N \subset N$. In this case, $T_z(H^2 \ominus N) \subset H^2 \ominus N$, and if $N \neq H^2$, then by the Beurling theorem there is an inner function θ satisfying $H^2 \ominus N = \theta H^2$. For a subset M of H^2 , we denote by $[M]_*$ the smallest backward shift invariant subspace containing M. If $[M]_* \neq H^2$, then there

^{*} Corresponding author.

E-mail addresses: izuchi@m.sc.niigata-u.ac.jp (K.J. Izuchi), izuchi@yamaguchi-u.ac.jp (K.H. Izuchi), yfd10198@nifty.com (Y. Izuchi).

 $^{^1}$ The first author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No. 15K04895).

is an inner function ζ_M satisfying that $H^2 \ominus [M]_* = \zeta_M H^2$. When $M = \{v\}$, we write $[M]_* = [v]_*$ and $H^2 \ominus [v]_* = \zeta_v H^2$. See [3,5,7] for the study of Toeplitz operators.

For a sequence $\{a_n\}_{n\geq 1}$ in \mathbb{D} with $\sum_{n\geq 1}(1-|a_n|)<\infty$, the associated Blaschke product is defined by

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{a}_n}{|a_n|} \frac{z-a}{1-\overline{a}_n z}, \quad z \in \mathbb{D}.$$

For a positive singular measure μ on \mathbb{T} , the associated singular function is defined by

$$\psi_{\mu}(z) = \exp\Big(-\int_{\mathbb{T}} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(e^{i\theta})\Big), \quad z \in \mathbb{D}.$$

It is well known that both b and ψ_{μ} are inner functions. See [6] for the function theory on \mathbb{D} .

In [2], Cowen and Gallardo-Gutiérrez studied the invariant subspace problem and Toeplitz operators (see also [1]). They posed three questions. In this paper, we answer two questions. Let δ_1 be the unit point mass at z = 1. We actually show that there is an infinite dimensional closed subspace M of ker $T^*_{\psi_{\delta_1}}$ satisfying the following:

- (i) $\zeta_v = \zeta_M = \psi_{\delta_1}$ for every nonzero $v \in M$.
- (ii) Either $M \cap \ker T^*_{\zeta} = \{0\}$ or $M \cap \ker T^*_{\zeta} = M$ for every inner function ζ .

This answers Question 3 given in [2, p. 502] affirmatively and gives a counterexample for Question 2 given in [2, p. 501].

2. Examples

For each $\alpha \in \mathbb{D}$, put

$$b_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}, \quad z \in \mathbb{D}.$$

For inner functions θ_1, θ_2 , we write $\theta_1 \prec \theta_2$ if θ_1 divides θ_2 in the family of inner functions.

Proposition 2.1. Let M be a closed subspace of H^2 such that $[M]_* \neq H^2$ and dim $M = \infty$. If ζ_M has a Blaschke factor, then there exists a nonzero $v_0 \in M$ satisfying the following.

- (i) $\zeta_v \neq \zeta_M$ and $\zeta_v \prec \zeta_M$ for every nonzero $v \in M$ with $v \perp v_0$ and $\zeta_{v_0} = \zeta_M$.
- (ii) $\{0\} \neq M \cap \ker T^*_{\zeta_v} \neq M$ for every nonzero $v \in M$ with $v \perp v_0$.

Proof. (i) By the assumption, we may write $\zeta_M = b_\alpha \sigma$ for some $\alpha \in \mathbb{D}$ and some inner function σ . Since dim $M = \infty$, σ is non-constant. By the definition of ζ_M , we have

$$M \not\subset H^2 \ominus \sigma H^2$$
 and $M \not\perp \sigma H^2 \ominus b_{\alpha} \sigma H^2 = \mathbb{C} \cdot \frac{\sigma}{1 - \overline{\alpha} z}.$

Let v_0 be the projection of $\sigma/(1-\overline{\alpha}z)$ onto M. Then $v_0 \in M$ and $v_0 \neq 0$. Let $v \in M$ with $v \perp v_0$. We have

$$v \perp \frac{\sigma}{1 - \overline{\alpha}z}$$
 and $v \perp \sigma H^2$.

Hence $\zeta_v \prec \sigma \prec \zeta_M$, so $\zeta_v \neq \zeta_M$.

Download English Version:

https://daneshyari.com/en/article/5774435

Download Persian Version:

https://daneshyari.com/article/5774435

Daneshyari.com