Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Pointwise selection theorems for metric space valued bivariate functions

霐

Vyacheslav V. Chistyakov^{*}, Svetlana A. Chistyakova

Department of Informatics, Mathematics, and Computer Science, National Research University Higher School of Economics, Bol'shaya Pechërskaya Street 25/12, Nizhny Novgorod 603155, Russian Federation

ARTICLE INFO

Article history: Received 14 February 2017 Available online 22 March 2017 Submitted by B. Bongiorno

Keywords: Functions of several variables Metric space Total joint variation Pointwise convergence Selection principle

ABSTRACT

We introduce a pseudometric TV on the set M^X of all functions mapping a rectangle X on the plane \mathbb{R}^2 into a metric space M, called the total joint variation. We prove that if two sequences $\{f_j\}$ and $\{g_j\}$ of functions from M^X are such that $\{f_j\}$ is pointwise precompact on X, $\{g_j\}$ is pointwise convergent on X with the limit $g \in M^X$, and the limit superior of $\mathrm{TV}(f_j, g_j)$ as $j \to \infty$ is finite, then a subsequence of $\{f_j\}$ converges pointwise on X to a function $f \in M^X$ such that $\mathrm{TV}(f, g)$ is finite. One more pointwise selection theorem is given in terms of total ε -variations ($\varepsilon > 0$), which are approximations of the total variation as $\varepsilon \to 0$.

@ 2017 Elsevier Inc. All rights reserved.

1. Main results

Pointwise selection principles are existence theorems guaranteeing the existence of a pointwise convergent subsequence of a given sequence of functions. The historically first example is the classical Helly's Theorem [25], [32, Section VIII.4]: a uniformly bounded sequence of real monotone functions on a closed interval [a,b] in \mathbb{R} contains a pointwise convergent subsequence whose limit is a bounded monotone function on [a,b]. As a corollary, the monotonicity of functions may be replaced by the uniform boundedness of their Jordan's variations. A far reaching consequence of the latter result is (Theorem C below and) the existence of selections of bounded (generalized) variation of univariate multifunctions of bounded (generalized) variation whose values are compact subsets of a metric space [10].

The purpose of this paper is to provide pointwise selection theorems for functions of several variables valued in an arbitrary metric space. In order to present the results in a simple and principal form and avoid (unnecessary) technicalities, we consider the case of bivariate functions on a closed rectangle.

We begin with reviewing definitions and facts needed for our results.

* Corresponding author.

E-mail addresses: czeslaw@mail.ru, vchistyakov@hse.ru (V.V. Chistyakov), schistyakova@hse.ru (S.A. Chistyakova).

Given two points $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$, we write x < y (or $x \le y$) provided $x_1 < y_1$ and $x_2 < y_2$ (or $x_1 \le y_1$ and $x_2 \le y_2$, respectively), and we denote by $I_x^y = \{z \in \mathbb{R}^2 : x \le z \le y\} = [x_1, y_1] \times [x_2, y_2]$ the rectangle in \mathbb{R}^2 with the end-points x and y. In what follows, points $a, b \in \mathbb{R}^2$, a < b, are fixed, and the domain of bivariate functions is the rectangle I_a^b .

Recall that a function $\nu: I_a^b \to \mathbb{R}$ is said to be *totally monotone* if, for all $x = (x_1, x_2), y = (y_1, y_2) \in I_a^b$ with $x \leq y$, we have

$$\nu(y_1, a_2) - \nu(x_1, a_2) \ge 0, \quad \nu(a_1, y_2) - \nu(a_1, x_2) \ge 0, \text{ and}$$

 $\nu(x_1, x_2) - \nu(y_1, x_2) - \nu(x_1, y_2) + \nu(y_1, y_2) \ge 0.$

Totally monotone functions are well-studied [1,4,6,23,26-30] (they are called *positively monotonely mono*tone in [26, III.4.3]). We recall the following two results for totally monotone functions, also needed below.

Theorem A ([26, III.5.4], [34]). The points of discontinuity of a totally monotone function on I_a^b lie on at most a countable collection of lines parallel to the coordinate axes in \mathbb{R}^2 .

Theorem B (Helly's selection principle from [7], [26, III.6.5]). A uniformly bounded sequence of totally monotone functions on I_a^b contains a subsequence, which converges pointwise on I_a^b to a bounded totally monotone function.

There are a number of extensions of Theorem B for multivariate functions of bounded variation in various senses: [26,27,30,31] for real valued functions, and [5,19-22] for *metric semigroup* valued functions (see below).

Of main interest in this paper are *metric space* valued functions on I_a^b . Our approach to the pointwise selection theorems for (sequences of) such functions is based on two notions of pseudometrics, the *joint increment* and *joint mixed difference*, to be defined as follows.

Let X be a nonempty set (in the sequel, X is a closed interval I = [a, b] in \mathbb{R} , or the rectangle I_a^b in \mathbb{R}^2), (M, d) be a metric space with metric d, and M^X be the set of all functions $f: X \to M$ mapping X into M. Given $f \in M^X$ and $u \in M$, we set $f_u(x) = d(u, f(x))$ for all $x \in X$ (so that f_u maps X into $[0, \infty)$) and note that

$$d(f(x), g(y)) = \max_{u \in M} |f_u(x) - g_u(y)| \text{ for all } f, g \in M^X \text{ and } x, y \in X.$$
(1.1)

In particular, setting $(f - g)_u(x) = f_u(x) - g_u(x)$ for $u \in M$ and $x \in X$, we find

$$d(f(x), g(x)) = \max_{u \in M} |(f - g)_u(x)|.$$
(1.2)

Although the 'subtraction' f - g is given by $(u, x) \mapsto (f - g)_u(x)$ and maps $M \times X$ into \mathbb{R} , passing to h = f - g and $h_u(x) = f_u(x) - g_u(x)$, for the sake of brevity, will be a convenient tool in some proofs below.

The *joint increment* of two functions $f, g \in M^X$ on the two-point set $\{x, y\} \subset X$ is (the increment of f - g, i.e.) the quantity introduced in [15, Chapter 5] and [16, Section 2] by

$$|(f,g)(x,y)| = \sup_{u \in M} |(f-g)_u(x) - (f-g)_u(y)|$$

=
$$\sup_{u \in M} |d(u,f(x)) - d(u,f(y)) - d(u,g(x)) + d(u,g(y))|.$$
 (1.3)

Now suppose X = I = [a, b] is a closed interval in \mathbb{R} (a < b). By a partition of I we mean a finite collection of points $\{t_i\}_{i=0}^m \subset I$ for some $m \in \mathbb{N}$ such that $a = t_0 < t_1 < \cdots < t_{m-1} < t_m = b$, which is written as $\{t_i\}_0^m \prec I$.

Download English Version:

https://daneshyari.com/en/article/5774440

Download Persian Version:

https://daneshyari.com/article/5774440

Daneshyari.com