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We adapt modulus of continuity estimates to the study of spectra of combinatorial 
graph Laplacians, as well as the Dirichlet spectra of certain weighted Laplacians. 
The latter case is equivalent to stoquastic Hamiltonians and is of current interest in 
both condensed matter physics and quantum computing. In particular, we introduce 
a new technique which bounds the spectral gap of such Laplacians (Hamiltonians) by 
studying the limiting behavior of the oscillations of their solutions when introduced 
into the heat equation. Our approach is based on recent advances in the PDE 
literature, which include a proof of the fundamental gap theorem by Andrews and 
Clutterbuck.

© 2017 Published by Elsevier Inc.

1. Introduction

In this paper, we investigate the spectral structure of combinatorial graph Laplacians by adapting recent 
advances in the spectral theory of Schrödinger operators on Rn. A combinatorial Laplacian L corresponding 
to a connected graph G of N vertices has eigenvalues 0 < λ1(L) ≤ λ2(L) ≤ · · · ≤ λN−1(L) and corresponding 
eigenvectors u0, u1, u2, . . . , uN−1. In part of what follows, we focus on the spectral gap of L, or the difference 
in its two lowest eigenvalues. In this case, because L always has lowest eigenvalue 0, the spectral gap is 
simply λ1(L).

To proceed, we introduce a technique based largely on the work of Ben Andrews, Julie Clutterbuck, and 
collaborators [1–6]. Additionally, we attempt an approach similar to [5] to bounding the spectral gap γ(H)
of the physically-motivated case of a Hermitian matrix H = L + W , where W is some diagonal matrix. 
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Recently, these matrices have been called “stoquastic Hamiltonians” in the physics literature [9].1 That the 
lowest eigenvalue of H is no longer 0 and the corresponding eigenvector is nonuniform makes determining 
the spectral gap of H a more challenging problem than that of L alone. In this paper, we reduce such a 
bound to an estimate involving the log-concavity of the lowest eigenvector u0 of H.

Because this is the first attempt at applying these techniques to graph spectra, we simplify our problem 
by considering only homogeneous graphs and their strongly convex subgraphs. A homogeneous graph G has 
an associated group H and the edges associated with any vertex of G may be identified with the elements of 
a particular generating set K for H. (For a formal definition, see Section 2.1.) We consider only the case such 
that g−1 ∈ K if and only if g ∈ K and therefore the graph is undirected. Also, we assume that the graph 
is invariant, or that the generating set K is invariant under conjugation by elements g ∈ K. A subgraph 
S ⊆ G with vertex set V (S) is strongly convex if for each pair of vertices x, y ∈ V (S), all of the shortest 
paths in G from x to y are also contained in S [13].

Our approach follows [5], where the authors proved the Fundamental Gap Conjecture. In particular, we 
study the behavior of oscillations in functions defined on the graph V (S). In [5], the authors studied the 
time-extended behavior of these oscillation terms when introduced into the heat equation, since such terms 
cannot decay any slower than Ce−λ1(L)t for some constant C. These oscillation terms are characterized by 
a modulus of continuity, a construct which typically tracks how uniformly continuous a function is, but we 
can think of as quantifying the size of oscillations separated by a particular distance. More specifically, for 
a function f : V (S) −→ R we say that it has modulus of continuity η if

|f(y) − f(x)| ≤ η(d(y, x)) for all y, x ∈ V (S)

where d(y, x) is the shortest path length between vertices y, x ∈ V (S). We will further formalize this modulus 
in Section 3.1.

By sacrificing some tightness, one can apply modulus of continuity estimates without utilizing the heat 
equation at all. Instead one can derive bounds in terms of the �2-norm of the modulus. Nonetheless, our 
intuition stems from the heat equation and we expect that the heat equation will prove useful in subsequent 
work, so we derive our results from this perspective.

In Section 3.1, we prove the primary result of this paper:

Theorem 1. Let L be the combinatorial Laplacian for a strongly convex subgraph S ⊆ G of an invariant 
homogeneous graph G. Then,

λ1(L) ≥ 2
(

1 − cos
(

π

D + 1

))

where D is the diameter of S.

This theorem gives a nice lower bound to the spectral gap of combinatorial Laplacians in terms of the 
diameter of the corresponding graph. Although there is a long history of results comparing eigenvalues to 
diameters, this particular bound relates λ1(L) to the first eigenvalue of the path graph of D + 1 vertices. 
This bound is also tight, since it is always achieved for S ⊂ G such that S is the path graph with D edges. 
As a corollary to Theorem 1, this bounds the eigenvalues of the normalized Laplacian L of S. Thus, this 

1 The term “stoquastic” comes from the resemblance to stochastic matrices. Up to normalization, stoquastic matrices are equiva-
lent to sub-stochastic matrices (cf. [14,15]). The spectral properties of sub-stochastic matrices have been previously studied in [18]. 
In graph theory, the current setting, these Hamiltonians correspond to Laplacians of subgraphs of weighted graphs with Dirichlet 
boundary, as discussed in Section 4 and elaborated on in [13].
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