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SMOOTH COMPOSITIONS WITH A NONSMOOTH
INNER FUNCTION

YONGJIE SHI AND CHENGJIE YU1

Abstract. Let p : R → R be a given function, and let Ap be the
set of smooth functions f such that f(p(·) + c) is smooth for any
c ∈ R. We show that if p is not smooth, then either every element
of Ap is constant, or there is a nonzero constant d such that Ap

equals to the set of smooth functions of periodicity d.

1. Introduction

In this paper, we prove the following result:

Theorem 1.1. Let n be a nonnegative integer or ∞, p : R → R be a
given function with p �∈ Cn(R,R) and

(1.1) Ap = {f ∈ Cn(R,R) | f(p(·) + c) ∈ Cn(R,R) for any c ∈ R}.
Then, either Ap = R or Ap = Cn

d (R,R) for some nonzero constant
d. Here, Ap = R means that every element in Ap is constant, and
Cn

d (R,R) means the collection of all functions in Cn(R,R) of periodicity
d.

This result is motivated by the work [1] of Christensen and Wu on
diffeological vector spaces. A weaker form of Theorem 1.1 is needed
in [1]. The method in [1] dealing with the weaker form seems not
applicable to prove Theorem 1.1.

It is clear that Ap is a translation invariant subalgebra of Cn(R,R).
As an example, take p = χE with E an abitrary subset of R (E �= ∅,R).
Then, it is clear that cos(2πx), sin(2πx) ∈ Ap. In fact, it is not hard
to see that Ap = Cn

1 (R,R) in this specific example.
A key ingredient in the proof of Theorem 1.1 is the following result

about the continuity of maps with σ-compact graph.
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