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We consider directed polymers in random environment on the lattice Zd at small 
inverse temperature and dimension d ≥ 3. Then, the normalized partition function 
Wn is a regular martingale with limit W . We prove that n(d−2)/4(Wn − W )/Wn

converges in distribution to a Gaussian law. Both the polynomial rate of convergence 
and the scaling with the martingale Wn are different from those for polymers on 
trees.

© 2017 Elsevier Inc. All rights reserved.

1. Polymer models and statement of the main result

1.1. Motivation

We consider directed polymers in random environment, given by a simple random walk on the 
d-dimensional lattice in a space–time random potential. In a seminal paper, Derrida and Spohn [12] perform 
a detailed analysis of polymers on the Cayley tree, or equivalently, the branching random walk with a fixed 
branching number. Later the same model has been taken up as an approximation and a toy model with ex-
plicit computations: in the physics literature, we mention the pleasant, recent and documented survey [15], 
and also [11] for the statistics of extremes on the hierarchical tree at zero temperature; on the mathematical 
side, the authors of [2] study the near-critical scaling window on the tree, the analogue of the intermediate 
disorder regime where the rescaled lattice model on line converges to the KPZ continuum random polymer 
[1,7]. Not only a source of inspiration and guidance, this model, as well as related random cascades, were 
also found to provide quantitative bounds on polymer models on the lattice in [9,26,27].
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In spite of these similarities, the two models behave quite differently in many aspects. In the strong 
disorder phase, the free energy of the branching process is linear in the inverse temperature β though it is 
strictly convex for the polymer on the lattice, see Theorem 1.5 in [8] in the case of a Bernoulli environment. 
Also, the fluctuations are expected to be of a completely different nature in the two models. In this paper, we 
consider the weak disorder regime, and we show that the martingale convergence takes place at a polynomial 
rate, whereas it is exponential in the corresponding supercritical Galton–Watson process [16,17].

More precisely, it is shown in [16,17] that, for a Galton–Watson process (Zn) with Z0 = 1, m = EZ1 > 1
and EZ2

1 < ∞, the renormalized population size Wn = Zn/m
n is a regular martingale with limit W such 

that

mn/2(W −Wn) → aW 1/2G in distribution (1)

and

mn/2 (W −Wn)
W

1/2
n

→ aG in distribution, (2)

where a2 = VarZ1
m2−m , G is a Gaussian N (0, 1) distributed random variable independent of W . Similarly, for 

branching random walks, the convergence of the Biggins martingale to its limit is exponentially fast [20,21]
in the regular case. Recently the same question was studied for a branching process in a random environment 
[19,31], leading to similar conclusions.

In this paper, we consider random polymers on the lattice in a time–space dependent random medium, 
deep inside the weak disorder regime. Similar to the supercritical case of a branching process, weak disorder 
can be defined as the regime where the natural martingale is regular [5,22], or where the polymer is diffusive 
[10]. It holds in space dimension d ≥ 3 [23] and at a temperature larger than some critical value which can 
be estimated by second moment and entropy considerations [4,6,18]. In Theorem 1.1 below, we prove that, 
at large temperature, the speed of convergence is polynomial but not exponential, and the limit scales with 
W or Wn instead of their square root as in (1) and (2). Precisely, we show a central limit theorem for the 
difference between the martingale and its limit: the ratio of the difference divided by n−(d−2)/4 times the 
martingale is asymptotically normal.

In view of (1) and (2), this limit behavior has two remarkable and unexpected features. The slowdown 
in the rate of convergence (compared to the branching case) is due to space correlations coming from 
further intersections between paths on the lattice but not on the tree. Also the unusual linear scaling in the 
martingale can be understood as coming from fluctuations, and quadratic variations scale like the square of 
the martingale.

The result helps us for a deeper comprehension of the polymers model, and opens a way for further limit 
theorems about it.

1.2. Notations

• The random walk: ({Sn}n≥0, Px) is a nearest neighbor, symmetric simple random walk on the 
d-dimensional integer lattice Zd starting from x, d ≥ 3. We let P = P0 and we denote by P [f ] =

∫
f dP the 

expectation of f with respect to P .
• The random environment: η = {η(n, x) : n ∈ N, x ∈ Z

d} is an independent and identically distributed 
(i.i.d.) sequence of real random variables (r.v.’s), non-constant, such that,

λ(β) := lnE[exp(βη(0, 0))] < ∞ for all β ∈ R,

where we denote by E the expectation over the environment. The corresponding probability measure will 
be denoted by P.
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