Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The variance conjecture on projections of the cube $\stackrel{\text{tr}}{\sim}$

David Alonso-Gutiérrez, Julio Bernués*

Área de análisis matemático, Departamento de matemáticas, Facultad de Ciencias, IUMA, Universidad de Zaragoza, Pedro cerbuna 12, 50009 Zaragoza, Spain

ARTICLE INFO

Article history: Received 27 March 2017 Available online 1 June 2017 Submitted by R.M. Aron

Keywords: Variance conjecture Log-concave measures Convex bodies ABSTRACT

We prove that the uniform probability measure μ on every (n-k)-dimensional projection of the n-dimensional unit cube verifies the variance conjecture with an absolute constant C

$$\operatorname{Var}_{\mu}|x|^{2} \leq C \sup_{\theta \in S^{n-1}} \mathbb{E}_{\mu} \langle x, \theta \rangle^{2} \mathbb{E}_{\mu} |x|^{2},$$

provided that $1 \leq k \leq \sqrt{n}$. We also prove that if $1 \leq k \leq n^{\frac{2}{3}} (\log n)^{-\frac{1}{3}}$, the conjecture is true for the family of uniform probabilities on its projections on random (n-k)-dimensional subspaces.

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction and notation

The (generalized) variance conjecture states that there exists an absolute constant C such that for every centered log-concave probability μ on \mathbb{R}^n (i.e. of the form $d\mu = e^{-v(x)}dx$ for some convex function $v : \mathbb{R}^n \to (-\infty, \infty]$)

$$\operatorname{Var}_{\mu}|x|^{2} \leq C\lambda_{\mu}^{2}\mathbb{E}_{\mu}|x|^{2},$$

where \mathbb{E}_{μ} and Var_{μ} denote the expectation and the variance with respect to μ and λ_{μ} is the largest eigenvalue of the covariance matrix, i.e. $\lambda_{\mu}^{2} = \max_{\theta \in S^{n-1}} \mathbb{E}_{\mu} \langle x, \theta \rangle^{2}$ where S^{n-1} denotes the unit Euclidean sphere in \mathbb{R}^{n} .

This conjecture was first considered in the context of the so called Central Limit Problem for isotropic convex bodies in [7] and it is a particular case of a more general statement, known as the Kannan, Lovász, and Simonovits or KLS-conjecture, see [9], which conjectures the existence of an absolute constant C such

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2017.05.071 0022-247X/© 2017 Elsevier Inc. All rights reserved.

 $^{^{\,\}pm}\,$ Partially supported by MINECO Spanish grant MTM2016-77710-P and DGA grant E-64.

E-mail addresses: alonsod@unizar.es (D. Alonso-Gutiérrez), bernues@unizar.es (J. Bernués).

that for any centered log-concave probability in \mathbb{R}^n and any locally Lipschitz function $g : \mathbb{R}^n \to \mathbb{R}$ such that $\operatorname{Var}_{\mu}g(x)$ is finite

$$\operatorname{Var}_{\mu} g(x) \leq C \lambda_{\mu}^{2} \mathbb{E}_{\mu} |\nabla g(x)|^{2}.$$

In recent years a number of families of measures have been proved to verify these conjectures (see [2] for a recent review on the subject). For instance, the KLS-conjecture is known to be true for the Gaussian probability and the uniform probability measures on the ℓ_p^n -balls, some revolution bodies, the simplex and, with an extra log *n* factor, on unconditional bodies and log-concave probabilities with many symmetries (see [4–6,8,10,11,14]). The best general known result for the KLS-conjecture adds a factor \sqrt{n} and is due to Lee and Vempala (see [12]). Besides, the variance conjecture is known to be true for uniform probabilities on unconditional bodies and on hyperplane projections of the cross-polytope and the cube (see [10] and [1]). The best general estimate for the variance conjecture is the one given by Lee and Vempala for the KLS-conjecture.

We would like to remark that, while in the case of the KLS-conjecture one can assume without loss of generality that μ is isotropic (since then every linear transformation of the measure verifies it) this is not the case when we restrict to the variance conjecture, as we are considering only the function $g(x) = |x|^2$.

Before stating our results let us introduce some more notation. Let

$$B_{\infty}^{n} := \{ x \in \mathbb{R}^{n} : |x_{i}| \le 1, \forall 1 \le i \le n \}$$

denote the *n*-dimensional unit cube and, for any $1 \le k \le n$, let $G_{n,n-k}$ be the set of all (n-k)-dimensional subspaces of \mathbb{R}^n . For any $E \in G_{n,n-k}$ we will denote by $K := P_E B_\infty^n$ the orthogonal projection of B_∞^n onto E and by μ the uniform probability on K. $\{e_i\}_{i=1}^n$ will denote the standard canonical basis in \mathbb{R}^n . As mentioned before, it was proved in [1] that the family of uniform probabilities on any (n-1)-dimensional projection of B_∞^n verifies the variance conjecture.

In this paper we will prove the following

Theorem 1.1. There exists an absolute constant C such that for any $1 \le k \le \sqrt{n}$ and any $E \in G_{n,n-k}$, if μ denotes the uniform probability measure on $K = P_E B_{\infty}^n$, then

$$Var_{\mu}|x|^2 \le C\lambda_{\mu}^2 \mathbb{E}_{\mu}|x|^2.$$

We will also prove the following theorem, which shows that for k in a larger range, the variance conjecture is true for the family of uniform probabilities on the projections of B_{∞}^n on a random (n - k)-dimensional subspace. For that matter, we denote by $\mu_{n,n-k}$ the Haar probability measure on $G_{n,n-k}$.

Theorem 1.2. There exist absolute constants C, c_1, c_2 such that for any $1 \le k \le \frac{n^{\frac{2}{3}}}{(\log n)^{\frac{1}{3}}}$, if μ denotes the uniform probability measure on $K = P_E(B_{\infty}^n)$, the measure $\mu_{n,n-k}$ of the subspaces $E \in G_{n,n-k}$ for which

$$Var_{\mu}|x|^2 \leq C\lambda_{\mu}^2 \mathbb{E}_{\mu}|x|^2$$

is greater than $1 - c_1 e^{-c_2 n^{\frac{2}{3}} (\log n)^{\frac{2}{3}}}$.

The main tool to prove both theorems will be to decompose an integral on K as the sum of the integrals on the projections of some (n - k)-dimensional faces. It was proved in [3] that for any $E \in G_{n,n-k}$ there exist F_1, \ldots, F_l a set of (n - k)-dimensional faces of B^n_{∞} such that for any integrable function f on K

$$\mathbb{E}_{\mu}f := \frac{1}{|K|} \int_{K} f(x) dx = \sum_{i=1}^{l} \frac{|P_{E}(F_{i})|}{|K|} \mathbb{E}_{P_{E}(F_{i})}f(x)$$

Download English Version:

https://daneshyari.com/en/article/5774507

Download Persian Version:

https://daneshyari.com/article/5774507

Daneshyari.com