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We prove that a finite (state and action spaces) semi-Markov decision process with 
limiting ratio average (undiscounted) payoff has an optimal pure semi-stationary 
policy (i.e., a semi-Markov policy independent of decision epoch count). We conclude 
by showing (with the aid of an example) that the result cannot be strengthened 
further. A crude but finite step algorithm is given to compute such an optimal 
policy.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the field of dynamic decision problems, we restrict ourselves to the notion of limiting ratio average 
reward/payoff. Derman [3] has shown that a finite (state and action spaces) Markov decision process (MDP) 
has a pure stationary optimal policy. If we relax the Markov property in such a dynamic set up and consider 
the more general (and applicable) semi-Markov decision processes (SMDPs) where the sojourn time is a 
random variable depending not only on the present state and the action chosen there but also on the next 
state to which it jumps, there was no existence result in the general multichain case till date (existence of 
stationary optimals are available under various ergodicity constraints viz. Ross [14], Federgruen, Hordijk and 
Tijms [6], Schäl [15], Feinberg [7]). SMDPs or Markov renewal programs were introduced in Jewell [10] and 
Howard [9] and these are powerful and natural tools for the optimization of queues, production scheduling, 
reliability and maintenance. Jianyong and Xiaobo [11] gave an example of an undiscounted (limiting ratio 
average) multichain SMDP which does not have any stationary optimal policy. This particular example was 
solved by Mondal and Sinha [13] where they have shown that it does not have any optimal Markov policy 
too. Recently, Mondal [12] proved that an undiscounted absorbing SMDP (with the assumption that the 
single non-absorbing state does not vary with policy) has a pure semi-stationary optimal policy. In its full 
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generality, still it was unknown whether for an undiscounted SMDP, any optimal policy exists for the decision 
maker. In this paper, we answer this question affirmatively and prove that a general undiscounted SMDP 
with finite state and action spaces admits a pure semi-stationary optimal policy. The paper is organized as 
follows. Section 2 presents a brief description of finite SMDP with limiting ratio average payoff. In section 3, 
we state and prove our main results. In section 4, a finite step algorithm is given for computing a pure 
semi-stationary optimal policy. An example is provided to describe the algorithm and to show that our 
result cannot be strengthened further.

2. Finite semi-Markov decision processes

A finite (state and action spaces) SMDP is defined by a collection of objects 〈S,A ={A(s) : s ∈ S}, p,Q, r〉, 
where the state space S = {1, 2, . . . , z} is a finite set, A(s) is the finite set of admissible pure actions in 
state s ∈ S and for each s, s′ ∈ S, a ∈ A(s), p(s′|s, a) represents the transition probability (i.e., p(s′|s, a) ≥ 0
and 

∑
s′∈S p(s′|s, a) = 1), whereas Qss′(· | a) is a distribution function on [0, ∞), called the conditional 

transition (sojourn) time distribution and r(s, a) is the immediate (expected) reward. The process starts at 
a state s1 ∈ S and the decision maker chooses an action a1 ∈ A(s1). Consequently, he receives an immediate 
reward r(s1, a1) and the system moves to a new state s2 ∈ S with probability p(s2|s1, a1) and following 
the transition time distribution function Qs1s2(· | a1). Once the transition to s2 occurs on the next decision 
epoch, the entire process, with s1 replaced by s2, is repeated over and over again. Thus, the SMDP proceeds 
over infinite time. An MDP is a particular case of an SMDP when all the transition times have identical 
distributions.

A history of the process up to the n-th decision epoch is defined by hn = (s1, a1, s2, . . . , sn−1, an−1, sn) for 
n ≥ 2 and h1 = (s1).
A (behavioral) policy π is defined by a sequence {πn(· | hn)}∞n=1, where πn(· | hn) specifies a probability 
distribution on A(sn) depending on the history hn.
A policy g = {gn}∞n=1 is called semi-Markov if for each n, gn depends only on s1, sn and the decision epoch 
number n.
A policy f = {fn} is called Markov if for each n, fn depends only on sn and n.
A stationary policy is a time-independent Markov policy. Such a policy f is simply denoted as f =
(f(1), f(2), . . . , f(z)), where for each s ∈ S, f(s) specifies a probability distribution on A(s) given by 
f(s) = {f(s, i) : i ∈ A(s)}, such that f(s, i) is the probability of choosing action i in state s.
A semi-stationary policy is a semi-Markov policy which is time-independent i.e., if a semi-Markov policy 
g(s1, sn, n) turns out to be independent of the time count n, we term it a semi-stationary policy. The termi-
nology is justified just as we descend from the class of Markov to stationary policies with time invariance. 
Thus, it can be represented as g = (f1, f2, . . . , fz), where fs is a stationary policy for the initial state s ∈ S.
A policy is called pure if it is non-randomized.
Let Π, GS , GSP , F and FP be respectively the classes of all behavioral, semi-stationary, pure semi-stationary, 
stationary and pure stationary policies.
Let (X1, A1, X2, A2, X3, . . .) be a coordinate sequence in S × (A × S)∞. Given a policy π ∈ Π and an 
initial state s ∈ S, there exists a unique probability measure Pπ(· | X1 = s) (and hence an expectation 
Eπ(· | X1 = s)) on the product σ-field of S × (A × S)∞ by Kolmogorov’s extension theorem.

Definition 1. For a behavioral policy π ∈ Π, the expected limiting ratio average rewards φ1 and φ2 are 
defined as

φ1(s, π) = lim inf
n→∞

Eπ[
∑n

m=1 r(Xm, Am) | X1 = s]
Eπ[

∑n
m=1 τ(Xm, Am) | X1 = s]

for all s ∈ S, (1)

and
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