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This paper is concerned with the asymptotic expansions of the amplitude of the 
solution of the Helmholtz equation. The original expansions were obtained using a 
pseudo-differential decomposition of the Dirichlet to Neumann operator. This work 
uses first and second order approximations of this operator to derive new asymptotic 
expressions of the normal derivative of the total field. The resulting expansions can 
be used to appropriately choose the ansatz in the design of high-frequency numerical 
solvers, such as those based on integral equations, in order to produce more accurate 
approximation of the solutions around the shadow and the deep shadow regions than 
the ones based on the usual ansatz.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Studying the Helmholtz equation at the high-frequency regime is fundamental in both the theoreti-
cal understanding of the corresponding solutions and the derivation of appropriate numerical schemes. The 
well-know asymptotic expansions developed by Melrose and Taylor [40] have significantly contributed in this 
matter and were the key in the design of several high-frequency integral equation methods. Indeed, integral 
equation methods are very efficient and widely used in the solution of acoustic scattering problems (see e.g. 
[23,21] and the references therein). However, the resulting linear systems are dense, ill-conditioned and with 
large size in particular when the frequency increases. Several effective strategies have been proposed to over-
come these difficulties [23,21,3,15,20,7–9,36,42,17,5,31,43,45,16,13,14,12]. Despite this significant progress, 
integral formulations are limited at higher frequencies since the numerical resolution of field oscillations can 
easily lead to impractical computational times. This is why hybrid numerical methods based on a combi-
nation of integral equations and asymptotic methods have found an increasing interest for the solution of 
high-frequency scattering problems. Indeed, the methodologies developed in this connection that specifically 
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concern scattering from a smooth convex obstacle were first introduced in [1,2]. Several other works followed 
these [19,28,4,18,25,35,30,27,26] and mainly consist of improving and analyzing this kind of numerical algo-
rithms in single and multiple scattering configurations. All these methods are mainly based on construction 
of an appropriate ansatz for the solution of integral equations in the form of a highly oscillatory function 
of known phase modulated by an unknown slowly varying envelope, which is expected to generate linear 
systems quasi-independent of the frequency.

The high-frequency integral equation methods mentioned above use the asymptotic expansions developed 
in the well-known paper by Melrose and Taylor [40] in the context of convex obstacles. From these expansions, 
an ansatz is derived and incorporated into integral equations to eliminate the highly oscillatory part of the 
unknown which usually corresponds to the physical density, normal derivative of the total field, computed 
on the surface of the obstacles. This surface is decomposed into three regions, the illuminated and shadows 
regions in addition to the deep shadow one. Each region is then numerically treated differently and the ansatz 
is set in general on the illuminated one. Although carefully designed, the aforementioned high-frequency 
integral equation formulations result in ill-conditioned matrices that limit the numerical accuracy of the 
approximate solutions. One explanation lies in the fact that the rapidly decaying behavior of the unknown 
density in the deep shadow regions is not incorporated into the approximation spaces as it is not intrinsic 
to the chosen ansatz. Generally speaking, it is not clear how to extract all the information needed from the 
leading term in the expansion given in [40], which restricts the construction of the ansatz.

In this paper, we derive new expansions of the normal derivative of the total field using approximations 
of the Dirichlet to Neumann (DtN) operator. The original expansions employed a pseudo-differential de-
composition of the DtN operator, and the related analysis focuses on the behavior of this field around the 
shadow boundary which leads to a corrected formula for the Kirchhoff approximation around this region 
[40]. However, it has been shown that these expansions are valid in the entire surface of the obstacles [25,
28]. Here, we choose first and second order approximations of the DtN operator of the Bayliss–Turkel type 
[11,38]. These conditions were designed to deal with the infinite aspect of the computational domain for 
scattering problems. They were also employed in the design of the On-Surface Radiation Conditions [6]. 
Other approximations such as those developed in [29] can also be adapted to our analysis without specific 
difficulties. To obtain these new expansions, we follow a similar procedure to the one given in [40]. Briefly, it 
consists of first finding the kernel of a certain operator, which allows the computation of its amplitude, and 
then use the stationary phase method to get the final expansions around the shadow boundary. In this case, 
we can use some of the results derived by Melrose and Taylor [40] in our analysis. The resulting expansions 
can then be used to appropriately build an ansatz that contains the expected behavior of the solution in the 
three regions, namely, the illuminated and the deep shadow regions in addition to the shadow boundaries. 
This provides an improvement over the usual ansatz that behaves like Kirchhoff approximations, meaning 
that the corresponding solutions are accurate mostly in the illuminated regions.

This paper is organized as follows. After reviewing the functional setting needed for this analysis, we 
state the problem and explain our choice, regarding the approximation of the DtN operator, in the second 
section. The two following sections are, respectively, devoted to the derivation of asymptotic expansions in 
the context of first and second order approximations of the DtN operator. The last section is reserved for 
some conclusions.

In this work, we will use the following functional spaces (for more details, see for instance [44,22]). Let 
U be an open bounded set of Rn.

• D(U): space of smooth test functions with compact support, from U to Rn.
• D′(U): space of distributions.
• S(Rn): Schwartz space or space of rapidly decreasing functions on Rn.
• S′(Rn): space of tempered distributions, which is the dual space of S(Rn).
• E ′: space of compactly supported distributions.
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