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Abstract

It has been known for some time that the Green’s function of a planar domain can be defined in terms of

the exit time of Brownian motion, and this definition has been extended to stopping times more general

than exit times. In this paper, we extend the notion of conformal invariance of Green’s function to

analytic functions which are not injective, and use this extension to calculate the Green’s function for

a stopping time defined by the winding of Brownian motion. These considerations lead to a new proof

of the Riemann mapping theorem. We also show how this invariance can be used to deduce several

identities, including the standard infinite product representations of several trigonometric functions.
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1 Introduction
In the field of analysis, Green’s function G(x, y) on regions of Rn is formally defined to be the solution of

LG(x, y) = δ(y − x), where L is a linear differential operator. In complex analysis, where the Laplacian

is the differential operator of most importance, for a given domain Ω ⊆ C and z ∈ Ω the Green’s function

of the Laplacian is generally defined by the following.

Definition 1. The Green’s function GΩ(z, w) on a domain Ω is a function in w on Ω\{z} satisfying the
following properties.
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