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Let X1, . . . , Xn be independent random points that are distributed according to 
a probability measure on Rd and let Pn be the random convex hull generated by 
X1, . . . , Xn (n ≥ d + 1). For natural classes of probability distributions and by 
means of Blaschke–Petkantschin formulae from integral geometry it is shown that 
the mean facet number of Pn is strictly monotonically increasing in n.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main result

Fix a space dimension d ≥ 2. For an integer n ≥ d + 1, let X1, . . . , Xn be independent random points 
that are chosen according to an absolutely continuous probability distribution on Rd. By Pn−1 and Pn we 
denote the random convex hulls generated by X1, . . . , Xn−1 and X1, . . . , Xn, respectively. In our present 
text we are interested in the mean number of facets Efd−1(Pn−1) and Efd−1(Pn) of Pn−1 and Pn. More 
specifically, we ask the following monotonicity question:

Is it true that Efd−1(Pn−1) ≤ Efd−1(Pn)?

This question has been put forward and answered positively by Devillers, Glisse, Goaoc, Moroz and Reitzner 
[7] for random points that are uniformly distributed in a convex body K ⊂ R

d if d = 2 and, if d ≥ 3, under 
the additional assumptions that the boundary of K is twice differentiable with strictly positive Gaussian 
curvature and that n is sufficiently large, that is, n ≥ n(K), where n(K) is a constant depending on K. 
Moreover, an affirmative answer was obtained by Beermann [4] if the random points are chosen with respect 
to the standard Gaussian distribution on Rd or according to the uniform distribution in the d-dimensional 
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unit ball for all d ≥ 2. Beermann’s proof essentially relies on a Blaschke–Petkantschin formula, a well known 
change-of-variables formula in integral geometry. Our aim in this text is to generalize her approach to other 
and more general probability distributions on Rd. In fact, we will be able to characterize all absolutely 
continuous rotationally symmetric distributions on Rd whose densities satisfy a natural scaling property 
(see (9) below), to which the methodology based on the Blaschke–Petkantschin formula can be applied and 
for which we can answer positively the monotonicity question posed above for any of these distributions. 
Moreover, we will apply our results to study similar monotonicity questions for a class of spherical convex 
hulls generated by random points on a half-sphere, which comprises as a special case the model recently 
studied by Bárány, Hug, Reitzner and Schneider [3].

To present our main result formally, we introduce four classes of probability measures:

– G is the class of centered Gaussian distributions on Rd with density proportional to

x �→ exp
(
− ‖x‖2

2σ2

)
, σ > 0,

– H is the class of heavy-tailed distributions on Rd with density proportional to

x �→
(
1 + ‖x‖2

σ2

)−β

, β > d/2, σ > 0,

– B is the class of beta-type distributions on the d-dimensional centered ball Bd
σ of radius σ with density 

proportional to

x �→
(
1 − ‖x‖2

σ2

)β

, β > −1, σ > 0,

– U comprises the uniform distributions on the (d − 1)-dimensional centered spheres Sd−1
σ with radius 

σ > 0.

It will turn out that the classes G, H, B and U contain precisely the absolutely continuous rotationally 
symmetric probability distributions on Rd, whose densities satisfy the natural scaling property (9) below, 
for which monotonicity of the mean facet number of the associated random convex hulls can be shown by 
means of arguments based on a Blaschke–Petkantschin formula, see the discussion at the end of Section 4
for further details. In fact, our result shows that even the stronger strict monotonicity holds.

Theorem 1. Let X1, . . . , Xn ∈ R
d, n ≥ d + 1, be independent and identically distributed according to a 

probability measure belonging to one of the classes G, H, B or U. Then,

Efd−1(Pn) > Efd−1(Pn−1).

It should be emphasized that strict monotonicity of n �→ fd−1(Pn) cannot hold pathwise (except for the 
trivial case n = d +1), since the addition of a further random point can reduce the facet number arbitrarily 
as the additional point might ‘see’ much more than d vertices of the already constructed random convex 
hull. For this reason, the expectation in Theorem 1 is essential.

We would also like to remark that monotonicity questions related to the volume of random convex hulls 
have recently attracted some interest in convex geometry because of their connection to the famous slicing 
problem. Namely, if K and L are two compact convex sets in Rd with interior points, let VK and VL be the 
volume of the convex hull of d +1 independent random points uniformly distributed in K and L, respectively. 
One is interested in the question whether the set inclusion K ⊆ L implies the inequality EVK ≤ EVL. In 
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