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NONLINEAR EVOLUTION EQUATIONS THAT ARE NON-LOCAL IN SPACE AND TIME

GASTON BELTRITTI AND JULIO D. ROSSI

Abstract. We deal with a nonlocal nonlinear evolution problem of the form∫∫
Rn×R

J(x− y, t− s)|v(y, s)− v(x, t)|p−2(v(y, s)− v(x, t)) dy ds = 0

for (x, t) ∈ R
n × [0,∞). Here p ≥ 2, J : R

n+1 → R is a nonnegative kernel, compactly supported inside the set
{(x, t) ∈ R

n+1 : t ≥ 0} with
∫∫

Rn×R
J(x, t) dx dt = 1 and v stands for an extension of a given initial value f , that is,

v(x, t) =

{
v(x, t) t ≥ 0,
f(x, t) t < 0.

For this problem we prove existence and uniqueness of a solution. In addition, we show that the solutions approximate
viscosity solutions to the local nonlinear PDE ‖∇u‖p−2ut = Δpu when the kernel is rescaled in a suitable way.

1. Introduction

Our main goal in this paper is the study of nonlinear evolution problems that are nonlocal both in space and
time. Let F (z) = |z|p−2z be a power type nonlinearity and let J : Rn+1 → R, a nonnegative, continuous kernel,
compactly supported in the set {(x, t) ∈ R

n+1 : t ≥ 0} with
∫∫

Rn×R
J(x, t)dxdt = 1. We fix an initial condition

f ∈ L∞(Rn × (−∞, 0)). Our aim is to look for solutions to the nonlocal nonlinear evolution problem

(P (J, f))
∫∫

Rn×R

J(x− y, t− s)F (v(y, s)− v(x, t)) dyds = 0

for (x, t) ∈ R
n × [0,∞) where we denoted by v the extension by f for t < 0 of a function v defined for t ≥ 0, that is,

v(x, t) =

{
v(x, t) t ≥ 0,
f(x, t) t < 0.

This paper can be viewed as a natural continuation of [1] where the linear case p = 2 was considered. Notice that here
a solution u verifies a nonlinear mean value formula given by P (J, f).

Our first result deals with existence and uniqueness of solutions. We denote by C the set of uniform continuous
functions, and L∞(f) stands for the set of bounded functions with norm less or equal than ‖f‖L∞(Rn×(−∞,0)).

Theorem 1. Let J : Rn+1 → R be, nonnegative, continuous and compactly supported in the set {(x, t) ∈ R
n+1 : t ≥ 0},

with
∫∫

Rn×R
J(x, t)dxdt = 1. Let f ∈ L∞(Rn × (−∞, 0)). Then, there exists a unique u ∈ C ∩ L∞(f)(Rn × [0,∞))

that solves P (J, f).

We will use the notation u for a solution with initial datum f and we will say that u solves the problem P (J, f).
Note that here we assumed that the kernel is nonnegative and integrable (singular kernels are out of the scope of this
paper). This fact together with the choice of f ∈ L∞(Rn × (−∞, 0)), makes the space C ∩ L∞(f)(Rn × [0,∞)) a
natural choice to look for solutions (remark that the integral that appears in P (J, f) is finite under these conditions).
Notice that there is a regularizing effect, for f ∈ L∞(Rn × (−∞, 0)) we obtain a uniformly continuous solution,
u ∈ C ∩ L∞(f)(Rn × [0,∞)). This is due to the fact that we assumed continuity of the kernel J .

We have two different proofs of this existence and uniqueness result. The first one is simpler. We just prove first
the result for a class of kernels that are compactly supported in the set

{
(x, t) ∈ R

n+1 : δ ≤ t ≤ δ + γ
}
, where δ and

γ are positive numbers, (this allows us to easily obtain existence and uniqueness of solutions in the strip t ∈ [0, δ) and
then in t ∈ [δ, 2δ), etc.). After that we obtain the result for a general kernel by approximating it with kernels in the
previously mentioned class. The second proof is more involved technically and is based on a fixed point argument (we
include this proof here since we believe that it has independent interest). This fixed point strategy was used for the
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