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In this paper, we study two classes of planar self-similar fractals Tε with a shifting 
parameter ε. The first one is a class of self-similar tiles by shifting x-coordinates of 
some digits. We give a detailed discussion on the disk-likeness (i.e., the property of 
being a topological disk) in terms of ε. We also prove that Tε determines a quasi-
periodic tiling if and only if ε is rational. The second one is a class of self-similar 
sets by shifting diagonal digits. We give a necessary and sufficient condition for Tε

to be connected.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a d × d integer expanding matrix (i.e., all of its eigenvalues are strictly larger than one in 
modulus), let D = {d1, . . . , dN} ⊂ R

d be a finite set of vectors for some integer N > 1, we term it a digit 
set. Let {Sj}Nj=1 be an iterated function system (IFS) where Sj(x) = A−1(x + dj), j = 1, . . . , N are affine 
maps. Since A is expanding, each Sj is a contractive map under a suitable norm [12] on Rd, there is a unique 
nonempty compact subset T := T (A, D) ⊂ R

d [9] such that

T =
N⋃
j=1

Sj(T ) = A−1(T + D).

Usually T is given explicitly by

T =
{ ∞∑

k=1

A−kdjk : djk ∈ D
}
. (1.1)
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Fig. 1. An illustration of Theorem 1.1 by taking p = 3.

We call T a self-affine set generated by the pair (A, D) (or the IFS {Sj}Nj=1). If, in addition, N = | det(A)|
and T has non-void interior (i.e., T ◦ �= ∅), then we call T a self-affine tile. That is, there exists a set J ⊂ R

d

such that

T + J = R
d and (T ◦ + t) ∩ (T ◦ + t′) = ∅ with t �= t′ ∈ J .

In this case, T +J is named a tiling of Rd. Particularly, if A is a constant multiple of an orthonormal matrix 
(i.e., A is a similarity and the {Sj}Nj=1 are similitudes), then T is called a self-similar set/tile accordingly.

Since the fundamental theory of self-affine tiles was established by Lagarias and Wang ([12], [13], [14]), 
there have been considerable interests in the topological structure of self-affine tiles T , including but not 
limited to the connectedness of T ([6], [7], [11], [1], [5], [20]), the boundary ∂T ([2], [17], [22]), or the interior 
T ◦ of a connected tile T ([24], [25]). Especially in R

2, the study on the disk-likeness of T (i.e., the property 
of being a topological disk) has attracted a lot of attentions ([4], [15], [23], [10], [5]). For other works on 
self-affine sets, we refer to [16], [18], [19], [21].

Any change on the matrix A and the digit set D may lead to some change on the topology of T (A, D). 
To simplify the analysis on the relations between those two types of “changes”, one may fix an expanding 
matrix A and focus on particular choices of the digit set D. Recently Deng and Lau [5] considered a class of 
planar self-affine tiles T that are generated by a lower triangular expanding matrix and product-form digit 
sets. They gave a complete characterization on both connectedness and disk-likeness of T .

Motivated by the above results, in this paper, we investigate the topological properties of the following 
two classes of self-similar fractals in R2. Assume that A is a diagonal matrix with equal nonzero entries, 
hence A is a similarity. In the first class, we consider a kind of digit sets Dε with a shift ε on the x-coordinates 
of some digits. We obtain an analogous result to [5].

Theorem 1.1. Let p be an integer with |p| = 2m + 1 where m ∈ N, let ε ∈ R. Suppose Tε is the self-similar 

set generated by A =
[
p 0
0 p

]
and

Dε =
{[

i + bj
j

]
: bj = 1 − (−1)j

2 ε, i, j ∈ {0,±1, . . . ,±m}
}
.

Then Tε is a self-similar tile. Moreover,
(i) if |ε| < |p|, then Tε is disk-like;
(ii) if |p|n ≤ |ε| < |p|n+1 for n ≥ 1, then T ◦

ε has |p|n components and the closure of every component is 
disk-like. (See Fig. 1.)

Furthermore, we consider the quasi-periodic tiling property of Tε (the definition will be recalled in Sec-
tion 3). Let Dε,k = Dε + ADε + · · · + Ak−1Dε and Dε,∞ =

⋃∞
k=1 Dε,k. We prove that
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