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GAUSSIAN DECAY OF HARMONIC OSCILLATORS AND

RELATED MODELS

B. CASSANO AND L. FANELLI

Abstract. We prove that the decay of the eigenfunctions of harmonic oscil-

lators, uniform electric or magnetic fields is not stable under 0-order complex
perturbations, even if bounded, of these Hamiltonians, in the sense that we
can produce solutions to the evolutionary Schrödinger flows associated to the
Hamiltonians, with a stronger Gaussian decay at two distinct times. We then
characterize, in a quantitative way, the sharpest possible Gaussian decay of
solutions as a function of the oscillation frequency or the strength of the field,
depending on the Hamiltonian which is considered. This is connected to the
Hardy’s Uncertainty Principle for free Schrödinger evolutions.

1. Introduction

Let us consider an electromagnetic Schrödinger Hamiltonian of the form

H = −ΔA + V (x),

where ΔA := (∇− iA)2 and the potentials A, V are given by

A : Rn → Rn, V : Rn → R.

We assume that H can be defined as a self-adjoint operator on a suitable subset
X ⊂ L2(Rn), so that the Schrödinger flow eitH is well-defined by functional calculus.
Moreover, we assume that H has pure point spectrum, and its eigenvalues form
an orthonormal basis of L2(Rn). This is a typical situation, if unbounded (at
infinity) perturbations are involved, like harmonic oscillators or uniform electric or
magnetic fields, as we see in the sequel. In this framework, we have a countable set
of standing-waves of the form eitHψk = eiλktψk, being λk an eigenvalue and ψk a
corresponding eigenfunction of H. The space-decay at infinity of these objects is,
independently of time, the one of the eigenfunctions ψk, which is, in most cases,
exponential. The two most relevant models are the following ones.

Example 1.1 (Quantum harmonic oscillator). Consider the 1D-equation

(1.1) i∂tu− ∂xxu+
ω2x2

4
u = 0.
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