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Bounds on ratios of modified Bessel functions with complex arguments

P. A. Martin
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Abstract

A simple uniform bound for the ratio of two modified spherical Bessel functions is derived. The arguments
of the two functions are complex but their ratio is real.
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1. Introduction

In a recent investigation in the context of acoustic scattering, we encountered a Volterra integral equation
of the second kind,

u(x)−
∫ ∞

x

K(x, y)u(y) dy = f(x), x > 1, (1)

where f(x) is given and u(x) is to be found. The kernel is given by

K(x, y) =
∫ y

x

(
W (y)

W (η)

)2

dη. (2)

where
W (ξ) = ξ1/2Kν(μξ), (3)

Kν is a modified Bessel function, and the parameters μ and ν will be specified shortly. Usually, Volterra
integral equations of the second kind (such as (1)) can be solved by iteration. To justify this approach, a
bound on |K(x, y)| is needed.

Fortunately, there is a recent paper by Baricz [1] containing a thorough review of the literature on known
bounds on ratios of modified Bessel functions. From [1, eqn (3.6)],

Kν(x)

Kν(y)
> ey−x

(y
x

)1/2

, |ν| > 1

2
, 0 < x < y.

Hence

F (y, η) ≡ W (y)

W (η)
=

y1/2Kν(μy)

η1/2Kν(μη)
< eμ(η−y), 0 < η < y. (4)

This holds for real μ with μ > 0. Using the bound (4) in (2),

0 < K(x, y) <
∫ y

x

e2μ(η−y) dη =
1

2μ

(
1− e−2μ(y−x)

)
≤ 1

2μ
,

as y ≥ x, and this uniform bound can be used to justify an iterative scheme.
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