Accepted Manuscript

On the maximal connective eccentricity index of bipartite graphs with some given parameters

Hongshuai Li, Shuchao Li, Huihui Zhang

PII:
S0022-247X(17)30440-7
DOI:
http://dx.doi.org/10.1016/j.jmaa.2017.05.003
Reference:
YJMAA 21364

To appear in: Journal of Mathematical Analysis and Applications

Received date: 28 November 2015

Please cite this article in press as: $\mathrm{H} . \mathrm{Li}$ et al., On the maximal connective eccentricity index of bipartite graphs with some given parameters, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.05.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

On the maximal connective eccentricity index of bipartite graphs with some given parameters*

Hongshuai Li^{a}, Shuchao $\mathrm{Li}^{a, \dagger}$, Huihui Zhang ${ }^{b}$
${ }^{a}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China
${ }^{b}$ Department of Mathematics, Luoyang Normal Univeristy, Luoyang 471002, P.R. China

Abstract

The connective eccentricity index is a novel graph invariant with vast potential in structure activity/property relationships. This graph invariant displays high discriminating power with respect to both biological activity and physical properties. Given a simple connected graph G, the connective eccentricity index (CEI) of G is defined as $\xi^{e e}(G)=\sum_{u v \in E_{G}}\left(\frac{1}{\varepsilon_{G}(u)}+\frac{1}{\varepsilon_{G}(v)}\right)$, where $\varepsilon_{G}(\cdot)$ denotes the eccentricity of the corresponding vertex. In this paper, we first determine the sharp upper bound on the CEI of graphs in the class of all n-vertex connected bipartite graphs with matching number q, the maximum CEI is realized only by the graph $K_{q, n-q}$. Second, we characterize the graph with the maximum CEI in the class of all the n-vertex connected bipartite graphs of given diameter. Finally, all the extremal graphs having the maximum CEI in the class of all the connected n-vertex bipartite graphs with a given connectivity s are identified as well.

Keywords: Reciprocal edge-eccentricity; Bipartite graph; Matching number; Diameter; Connectivity

2010 AMS subject classification: 05C05

1. Introduction

In this paper, we consider connected, simple and undirected graphs. Let G be a simple connected graph with vertex set V_{G} and edge set E_{G}. We follow the notations and terminologies in [2] except if otherwise stated.

The distance, $d_{G}(u, v)$, between two vertices u, v of G is the length of a shortest $u-v$ path in G. The eccentricity $\varepsilon_{G}(v)$ of a vertex v is the distance between v and a furthest vertex from v. The diameter of G is defined as the maximum of the eccentricities of vertices of G. For any edge $e=u v \in E_{G}$, we may define edge-eccentricity of e as $e c(e)=\varepsilon_{G}(u)+\varepsilon_{G}(v)$; whereas its reciprocal edge-eccentricity is defined as ree $(e)=\frac{1}{\varepsilon_{G}(u)}+\frac{1}{\varepsilon_{G}(v)}$; see [29]. When the graph is clear from the context, we will omit the subscript G from the notation.

Molecular descriptors play an important role in mathematical chemistry, especially in the QSPR and QSAR modeling [1]. Among them, a special place is reserved for the so-called topological indices, or graph invariants. The best-studied distance-based graph invariant probably is the Wiener index [39], one of the most common chemical indices that correlates a chemical compound's structure with the compound's physical-chemical properties. The Wiener index, introduced in 1947, is defined as the sum of distances between all pairs of vertices, i.e., $W(G)=$ $\sum_{\{u, v\} \subseteq V_{G}} d_{G}(u, v)$. For more results on the Wiener index one may be referred to those in $[11,22-24,26,36]$ and the references therein.

Another distance-based graph invariant, defined in a fully analogous manner to Wiener index, is the Harary index $[19,34]$, which is equal to the sum of reciprocal distances over all unordered vertex pairs in G, i.e., $H(G)=$ $\sum_{\{u, v\} \subseteq V_{G}} \frac{1}{d_{G}(u, v)}$. For more results on the Harary index, one may be referred to $[4,18,21,30,34,40]$.

More recently, the distance-based graph invariants involving eccentricity have attracted more and more attention. These graph invariants mainly include the average eccentricity $[3,15]$, the superaugmented eccentric

[^0]Download Persian Version:

https://daneshyari.com/article/5774774

Daneshyari.com

[^0]: *Financially supported by the National Natural Science Foundation of China (Grant Nos. 11671164, 11271149, 11371162), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0817) and the excellent doctoral dissertation cultivation grant from Central China Normal University (Grant No. 2016YBZZ084).
 ${ }^{\dagger}$ E-mail: lhsmath@sina.com (H.S. Li), lscmath@mail.ccnu.edu.cn (S.C. Li), zhanghhmath@163.com (H.H. Zhang).

