Differentiability of a two-parameter family of self-affine functions

Pieter C. Allaart
Department of Mathematics, University of North Texas, 1155 Union Circle \#311430, Denton, TX 76203-5017, USA

A R T I C L E I N F O

Article history:

Received 3 August 2016
Available online 26 January 2017
Submitted by B. Bongiorno

Keywords:

Continuous nowhere differentiable
function
Infinite derivative
Beta-expansion
Hausdorff dimension
Komornik-Loreti constant
Thue-Morse sequence

Abstract

This paper highlights an unexpected connection between expansions of real numbers to noninteger bases (so-called β-expansions) and the infinite derivatives of a class of self-affine functions. Precisely, we extend Okamoto's function (itself a generalization of the well-known functions of Perkins and Katsuura) to a two-parameter family $\left\{F_{N, a}: N \in \mathbb{N}, 1 /(N+1)<a<1\right\}$. We first show that for each $x, F_{N, a}^{\prime}(x)$ is either $0, \pm \infty$, or undefined. We then extend Okamoto's theorem by proving that for each N, depending on the value of a relative to a pair of thresholds, the set $\left\{x: F_{N, a}^{\prime}(x)=0\right\}$ is either empty, uncountable but Lebesgue null, or of full Lebesgue measure. We compute its Hausdorff dimension in the second case. The second result is a characterization of the set $\mathcal{D}_{\infty}(a):=\left\{x: F_{N, a}^{\prime}(x)= \pm \infty\right\}$, which enables us to closely relate this set to the set of points which have a unique expansion in the (typically noninteger) base $\beta=1 / a$. Recent advances in the theory of β-expansions are then used to determine the cardinality and Hausdorff dimension of $\mathcal{D}_{\infty}(a)$, which depend qualitatively on the value of a relative to a second pair of thresholds.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to investigate the differentiability of a two-parameter family of self-affine functions, constructed as follows. Fix a positive integer N and a real parameter a satisfying $1 /(N+1)<a<1$, and let b be the number such that $(N+1) a-N b=1$. Note that $0<b<a$. Let $x_{i}:=i /(2 N+1)$, $i=0,1, \ldots, 2 N+1$, and for $j=0,1, \ldots, N$, put $y_{2 j}:=j(a-b)$, and $y_{2 j+1}:=(j+1) a-j b$. Now set $f_{0}(x):=x$, and for $n=1,2, \ldots$, define f_{n} recursively on each interval $\left[x_{i}, x_{i+1}\right](i=0,1, \ldots, 2 N)$ by

$$
\begin{equation*}
f_{n}(x):=y_{i}+\left(y_{i+1}-y_{i}\right) f_{n-1}\left((2 N+1)\left(x-x_{i}\right)\right), \quad x_{i} \leq x \leq x_{i+1} \tag{1}
\end{equation*}
$$

Each f_{n} is a continuous, piecewise linear function from the interval $[0,1]$ onto itself, and it is easy to see that the sequence $\left(f_{n}\right)$ converges uniformly to a limit function which we denote by $F_{N, a}$. This function $F_{N, a}$ is continuous and maps $[0,1]$ onto itself. It may be viewed as the self-affine function "generated" by

[^0]

Fig. 1. The first two steps in the construction of $F_{1, a}$.

Fig. 2. Graph of $F_{1, a}$ for $a=5 / 6$ (Perkins' function; left) and $a=\hat{a}_{\infty} \doteq .5598$ (right). See Section 2.2 for the definition and significance of \hat{a}_{∞}.

Fig. 3. The generating pattern and graph of $F_{2, a}$, shown here for $a=0.6$.
the piecewise linear function with interpolation points $\left(x_{i}, y_{i}\right), i=0,1, \ldots, 2 N+1$. When $N=1$ we have Okamoto's family of self-affine functions [23], which includes Perkins' function [25] for $a=5 / 6$ and the Katsuura function [14] for $a=2 / 3$; see also Bourbaki [4]. Fig. 1 illustrates the above construction for $N=1$; graphs of $F_{1, a}$ for two values of a are shown in Fig. 2; and Fig. 3 illustrates the case $N=2$.

The restriction $a>1 /(N+1)$ is not necessary; when $a=1 /(N+1)$ we have $b=0$ and $F_{N, a}$ is a generalized Cantor function. When $0<a<1 /(N+1)$, we have $b<0$ and $F_{N, a}$ is strictly increasing and singular. Since the differentiability of such functions has been well-studied (e.g. [6-9,12,15,22,27]), we will focus exclusively on the case $a>1 /(N+1)$, when $F_{N, a}$ is of unbounded variation. However, see [1] for a detailed analysis of the case $N=1, a \leq 1 / 2$.

https://daneshyari.com/en/article/5774823

Download Persian Version:

https://daneshyari.com/article/5774823

Daneshyari.com

[^0]: E-mail address: allaart@unt.edu.
 http://dx.doi.org/10.1016/j.jmaa.2017.01.073
 0022-247X/© 2017 Elsevier Inc. All rights reserved.

