Kazdan-Warner equation on graph in the negative case

Huabin Ge
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

A R T I C L E I N F O

Article history:

Received 4 February 2017
Available online 27 April 2017
Submitted by S.A. Fulling

Keywords:

Kazdan-Warner equation
Graph
\qquad
A B S T R A C T

Let $G=(V, E)$ be a connected finite graph. In this short paper, we reinvestigate the Kazdan-Warner equation

$$
\Delta u=c-h e^{u}
$$

with $c<0$ on G, where h defined on V is a known function. Grigor'yan, Lin and Yang [3] showed that if the Kazdan-Warner equation has a solution, then \bar{h}, the average value of h, is negative. Conversely, if $\bar{h}<0$, then there exists a number $c_{-}(h)<0$, such that the Kazdan-Warner equation is solvable for every $0>c>c_{-}(h)$ and it is not solvable for $c<c_{-}(h)$. Moreover, if $h \leq 0$ and $h \not \equiv 0$, then $c_{-}(h)=-\infty$. Inspired by Chen and Li's work [1], we ask naturally:

Is the Kazdan-Warner equation solvable for $c=c_{-}(h) ?$

In this paper, we answer the question affirmatively. We show that if $c_{-}(h)=-\infty$, then $h \leq 0$ and $h \not \equiv 0$. Moreover, if $c_{-}(h)>-\infty$, then there exists at least one solution to the Kazdan-Warner equation with $c=c_{-}(h)$.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the following equation

$$
\Delta_{g} u=c-h e^{u}
$$

gives a description of the conformal deformation of the smooth metric g on a 2-dimensional closed Riemannian manifold (M, g). Kazdan and Warner had given satisfying characterizations to the solvability of the above equation.

[^0]Grigor'yan, Lin and Yang [3] first studied the corresponding equation on a connected finite graph $G=$ (V, E), where V is the vertex set and E is the edge set. Denote $C(V)$ as the set of real functions on V. The discrete graph Laplacian $\Delta: C(V) \rightarrow C(V)$ is

$$
\Delta f_{i}=\frac{1}{\mu_{i}} \sum_{j \sim i} \omega_{i j}\left(f_{j}-f_{i}\right)
$$

for $f \in C(V)$ and $i \in V$, where $\mu: V \rightarrow(0,+\infty)$ is a fixed vertex measure, and $\omega: E \rightarrow(0,+\infty)$ is a fixed symmetric edge measure on G. Grigor'yan, Lin and Yang [3] considered

$$
\begin{equation*}
\Delta u=c-h e^{u}, \tag{1.1}
\end{equation*}
$$

where $c \in \mathbb{R}$, and $h \in C(V)$. For any $f \in C(V)$, denote \bar{f} as the average value of f with respect to the measure μ. Let us summarize the results of Grigor'yan, Lin and Yang [3].

- $c=0$ case. Assume $h \not \equiv 0$, then the equation (1.1) has a solution if and only if h changes sign and $\bar{h}<0$.
- $c>0$ case. The equation (1.1) has a solution if and only if h is positive somewhere.
- $c<0$ case. If (1.1) has a solution, then $\bar{h}<0$. On the contrary, if $\bar{h}<0$, then there exists a constant $-\infty \leq c_{-}(h)<0$ depending only on h such that (1.1) has a solution for any $c \in\left(c_{-}(h), 0\right)$, but has no solution for any $c<c_{-}(h)$. Moreover, if $h \leq 0$ and $h \not \equiv 0$, then $c_{-}(h)=-\infty$ and hence (1.1) always has a solution.

In the following we shall call the equation (1.1) "Kazdan-Warner equation" (on graph). One can see from Grigor'yan, Lin and Yang's results, when c is nonnegative, the solvability of (1.1) has been understood completely. However, in the case when c is negative, one still needs to know:

Can one solve the Kazdan-Warner's equation (1.1) when $c=c_{-}(h)$?

The main purpose of this paper is to answer the above question. We prove
Theorem 1.1. Consider the Kazdan-Warner equation (1.1) with $c<0$ and $\bar{h}<0$. Suppose that $c_{-}(h)<0$ is given as above. If $c_{-}(h)=-\infty$, then $h \leq 0$ and $h \not \equiv 0$. If $c_{-}(h)>-\infty$, then there exists at least one solution to (1.1) with $c=c_{-}(h)$.

In the following of this paper, we prove Theorem 1.1 by using variational principles and the method of upper and lower solutions. We follow the approach pioneered by Chen and Li [1], and Kazdan and Warner [4].

2. The proof of Theorem 1.1

Lemma 2.1. Consider the Kazdan-Warner equation (1.1) with $c<0$. If it has a solution u, then the unique solution φ to

$$
\begin{equation*}
(\Delta+c) \varphi=h \tag{2.1}
\end{equation*}
$$

satisfies $\varphi \geq e^{-u}$.
Proof. Using $e^{x}-1 \geq x$ for any $x \in \mathbb{R}$, we have $e^{u_{i}-u_{j}}-1 \geq u_{i}-u_{j}$ and further

$$
\omega_{i j}\left(e^{-u_{j}}-e^{-u_{i}}\right) \geq e^{-u_{i}} \omega_{i j}\left(u_{i}-u_{j}\right) .
$$

https://daneshyari.com/en/article/5774881

Download Persian Version:
https://daneshyari.com/article/5774881

Daneshyari.com

[^0]: E-mail address: hbge@bjtu.edu.cn.
 http://dx.doi.org/10.1016/j.jmaa.2017.04.052
 0022-247X/© 2017 Elsevier Inc. All rights reserved.

