
J. Math. Anal. Appl. 453 (2017) 1044–1085

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The jump set under geometric regularisation. Part 2: 
Higher-order approaches

T. Valkonen
Department of Mathematical Sciences, University of Liverpool, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 August 2015
Available online 29 April 2017
Submitted by P. Koskela

Keywords:
Bounded variation
Higher-order
Regularisation
Jump set
TGV
ICTV

In Part 1, we developed a new technique based on Lipschitz pushforwards for 
proving the jump set containment property Hm−1(Ju \ Jf ) = 0 of solutions u
to total variation denoising. We demonstrated that the technique also applies to 
Huber-regularised TV. Now, in this Part 2, we extend the technique to higher-
order regularisers. We are not quite able to prove the property for total generalised 
variation (TGV) based on the symmetrised gradient for the second-order term. 
We show that the property holds under three conditions: First, the solution u is 
locally bounded. Second, the second-order variable is of locally bounded variation, 
w ∈ BVloc(Ω; Rm), instead of just bounded deformation, w ∈ BD(Ω). Third, w
does not jump on Ju parallel to it. The second condition can be achieved for 
non-symmetric TGV. Both the second and third condition can be achieved if we 
change the Radon (or L1) norm of the symmetrised gradient Ew into an Lπ norm, 
p > 1, in which case Korn’s inequality holds. On the positive side, we verify the 
jump set containment property for second-order infimal convolution TV (ICTV) 
in dimension m = 2. We also study the limiting behaviour of the singular part of 
Du, as the second parameter of TGV2 goes to zero. Unsurprisingly, it vanishes, but 
in numerical discretisations the situation looks quite different. Finally, our work 
additionally includes a result on TGV-strict approximation in BV(Ω).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We introduced in Part 1 [38] the double-Lipschitz comparability condition of a regularisation functional R. 
Roughly

R(γ#u) + R(γ#u) − 2R(u) ≤ Tγ,γ |Du|(clU), (1)

whenever γ, γ : Ω → Ω are bi-Lipschitz transformations reducing to the identity outside U ⊂ Ω. Constructing 
specific Lipschitz shift transformations around a point x ∈ Ju, for which the constant Tγ,γ = O(ρ2) for ρ > 0
the size of the shift, we were able to prove the jump set containment
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Hm−1(Ju \ Jf ) = 0 (J)

for u ∈ BV(Ω) the solution of the denoising or regularisation problem

min
u∈BV(Ω)

ˆ

Ω

φ(f(x) − u(x)) dx + R(u). (P)

The admissible fidelities φ include here φ(t) = tp for 1 < p < ∞. For p = 1 we produced somewhat 
weaker results comparable to those for total variation (TV) in [23]. The admissible regularisers R included, 
obviously, total variation, for which the property was already proved previously by level set techniques 
[14]. We also showed the property for Huber-regularised total variation as a new contribution besides the 
technique. If non-convex total variation models and the Perona–Malik anisotropic diffusion were well-posed, 
we demonstrated that the technique would also apply to them.

The development of the new technique was motivated by higher-order regularisers, in particular by total 
generalised variation (TGV, [9]), for which the level set technique is not available due to the lack of a 
co-area formula. In this Part 2, we now aim to extend our Lipschitz pushforward technique to variants of 
TGV as well as infimal convolution TV (ICTV, [15]). In order to do this, we need to modify the double-
Lipschitz comparability criterion (1) a little bit. Namely, we will in Section 3 introduce rigorously a partial 
double-Lipschitz comparability condition of the form

R(γ#(u− v) + v) + R(γ#(u− v) + v) − 2R(u) ≤ Tγ,γ |D(u− v)|(clU) + small terms. (2)

Here, in comparison to (1), we have subtracted v from u before the pushforward. The idea is the same as 
in the application the jump set containment result for TV to prove it for ICTV. As we may recall

ICTV�α(u) := min
v∈W 1,1(Ω),

∇v∈BV(Ω;Rm)

α‖Du−∇v‖2,M(Ω;Rm) + β‖D∇v‖F,M(Ω;Rm×m),

where �α = (β, α). Now, if u solves (P) for R = ICTV�α, then u solves

min
u∈BV(Ω)

ˆ

Ω

φ(|f(x) − u(x)|) dx + α‖Du−∇v‖2,M(Ω;Rm),

with v fixed. Otherwise written, ū = u − v solves for f̄ = f − v the total variation denoising problem

min
u∈BV(Ω)

ˆ

Ω

φ(|f̄(x) − ū(x)|) dx + α‖Dū‖2,M(Ω;Rm).

Since v ∈ W 1,1(Ω) has no jumps, Jf̄ = Jf , the property (J) that ICTV would introduce no jumps would 
follow from the corresponding result for TV if we had further v ∈ L∞(Ω). We verify that this is indeed the 
case if m ∈ {1, 2}, and consequently prove the jump set containment property for ICTV in these dimensions.

The idea with v in (2) is roughly the same as this: to remove the second-order information from the 
problem, and reduce it into a first-order one. However, unlike in the case of ICTV, generally, we cannot 
reduce the problem to TV. Indeed, written in the differentiation cascade formulation [11], second-order 
TGV reads as

TGV2
�α(u) := min

w∈BD(Ω)
α‖Du− w‖2,M(Ω;Rm) + β‖Ew‖F,M(Ω;Sym2(Rm)). (3)
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