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If the set of points where a function is nonzero is of finite measure, and its Weyl 
transform is a finite rank operator, then the function is identically zero.
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1. Introduction

That a nonzero function and its Fourier transform cannot both be sharply localized is known as the 
Uncertainty Principle in Harmonic Analysis. There are many different precise formulations of this principle, 
depending on the way in which localization is quantified. One such is Benedicks’ theorem [1]: if f ∈ L1(R), 
and the sets {x ∈ R | f(x) �= 0} and {ξ ∈ R | f̂(ξ) �= 0} both have finite Lebesgue measure, then f ≡ 0. 
In this paper, we prove an analog of Benedicks’ theorem for the Weyl transform. The Weyl transform is 
the essence of the group Fourier transform on the Heisenberg group, and also plays a role in the theory of 
pseudo-differential operators.

Let H = L2(R), and B(H) the set of bounded operators on H. If f ∈ L1(R2), the Weyl transform of f is 
the operator W (f) ∈ B(H) defined by

(W (f)ϕ)(t) =
∫∫

f(x, y)eπi(xy+2yt)ϕ(t + x) dxdy.

Our analog of Benedicks’ theorem is the following.

Theorem 1.1. If the set {w ∈ R2 | f(w) �= 0} has finite Lebesgue measure and W (f) is a finite rank operator, 
then f ≡ 0.
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Recall that the Heisenberg group G is the set of triples

{(x, y, z) | x, y ∈ R, z ∈ C, |z| = 1}

with multiplication defined by

(x, y, z)(x′, y′, z′) =
(
x + x′, y + y′, zz′eπi(xy

′−yx′)
)
.

According to the Stone–von Neumann Theorem, there is a unique irreducible unitary representation ρ of G
such that

ρ(0, 0, z) = zI.

The standard realization of this representation is on the Hilbert space H by the action

(ρ(x, y, z)ϕ)(t) = zeπi(xy+2yt)ϕ(t + x).

Thus, the Weyl transform may be expressed as

W (f) =
∫∫

f(x, y)ρ(x, y, 1) dxdy, f ∈ L1(R2).

If X is a trace class operator on H, the modified Fourier–Wigner transform of X is the function
α(X) : R2 → C defined by

α(X)(x, y) = tr(Xρ(x, y, 1)∗).

It is well known (see e.g. [2]) that if f ∈ L1(R2) and W (f) is a trace class operator then α(W (f)) = f , and 
that if X is a trace class operator on H and α(X) ∈ L1(R2) then W (α(X)) = X. Thus we may reformulate 
Theorem 1.1 as

Theorem 1.2. If X is a finite rank operator on H and the set {w ∈ R2 | α(X)(w) �= 0} has finite measure, 
then X = 0.

Theorem 1.1 was proved in [5] with the hypothesis that f is compactly supported. However, as pointed 
out by Benedicks in [1], this is a very strong hypothesis, because the support of f is the closure of the set 
{w ∈ R2 | f(w) �= 0}, and there are open sets of arbitrarily small measure whose closure is all of R2. The 
clever argument used in [5] doesn’t seem to be susceptible to generalization. Our argument is closer in spirit 
to Benedicks’ original argument, but depends on a deep result of Linnel [3].

2. The double induced realization

Let π : G → R2 be the projection π(x, y, z) = (x, y). Then π is a homomorphism and ker(π) = Z(G), the 
center of G. Let U(1) = {z ∈ C | |z| = 1}. For (x, y) ∈ R2, let s(x, y) = (x, y, 1). Then s is a section of π, 
i.e. π ◦ s = idR2 , and

s(x, y)s(x′, y′) = (x + x′, y + y′, eπi(xy
′−yx′)) = ψ((x, y), (x′, y′))s(x + x′, y + y′),

where ψ((x, y), (x′, y′)) ∈ Z(G) is defined by

ψ((x, y), (x′, y′)) = (0, 0, eπi(xy
′−yx′)).
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