J. Math. Anal. Appl. • • • (•••

Contents lists available at ScienceDirect

YJMAA:21288

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Hilbert matrix on spaces of Bergman-type

Miroljub Jevtić¹, Boban Karapetrović^{*,2}

University of Belgrade, Faculty of Mathematics, Studentski trg 16, Serbia

ARTICLE INFO

Article history: Received 29 December 2016 Available online xxxx Submitted by D. Khavinson

Keywords: Hilbert matrix operator Bergman-type spaces

ABSTRACT

It is well known (see [8,14]) that the Libera operator \mathcal{L} is bounded on the Besov space $H^{p,q,\alpha}_{\nu}$ if and only if $0 < \kappa_{p,\alpha,\nu} := \nu - \alpha - \frac{1}{p} + 1$. We prove unexpected results: the Hilbert matrix operator H, as well as the modified Hilbert operator \widetilde{H} , is bounded on $H^{p,q,\alpha}_{\nu}$ if and only if $0 < \kappa_{p,\alpha,\nu} < 1$. In particular, H, as well as \widetilde{H} , is bounded on the Bergman space $A^{p,\alpha}$ if and only if $1 < \alpha + 2 < p$ and is bounded on the Dirichlet space $\mathcal{D}^p_{\alpha} = A^{p,\alpha}_1$ if and only if $\max\{-1, p-2\} < \alpha < 2p-2$. Our results are substantial improvement of [11, Theorem 3.1] and of [6, Theorem 5]. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathcal{H}(\mathbb{D})$ be the space of all functions holomorphic in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ endowed with the topology of uniform convergence on compact subsets of \mathbb{D} .

For $0 , Hardy space <math>H^p$ is the space of all functions $f \in \mathcal{H}(\mathbb{D})$ for which

$$||f||_{H^p} = ||f||_p = \sup_{0 \le r < 1} M_p(r, f) < \infty,$$

where

$$M_{p}(r,f) = \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt\right)^{\frac{1}{p}}, \ 0
$$M_{\infty}(r,f) = \sup_{0 \le t < 2\pi} |f(re^{it})|.$$$$

Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2017.04.0020022-247X/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: M. Jevtić, B. Karapetrović, Hilbert matrix on spaces of Bergman-type, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.04.002

E-mail addresses: jevtic@matf.bg.ac.rs (M. Jevtić), bkarapetrovic@matf.bg.ac.rs (B. Karapetrović).

 $^{^1\,}$ The first author is supported by NTR Serbia, Project ON174017.

 $^{^2\,}$ The second author is supported by NTR Serbia, Project ON174032.

ARTICLE IN PRESS

M. Jevtić, B. Karapetrović / J. Math. Anal. Appl. • • • (• • • •) • • • - • • •

A function $f \in \mathcal{H}(\mathbb{D})$ is said to belong to the mixed norm space $H^{p,q,\alpha}$, $0 < p,q \leq \infty$, $0 < \alpha < \infty$, if

$$\|f\|_{H^{p,q,\alpha}} = \|f\|_{p,q,\alpha} = \left(\int_{0}^{1} M_{p}^{q}(r,f)(1-r)^{q\alpha-1}dr\right)^{\frac{1}{q}} < \infty, \ 0 < q < \infty;$$
$$\|f\|_{H^{p,\infty,\alpha}} = \|f\|_{p,\infty,\alpha} = \sup_{0 \le r < 1} (1-r)^{\alpha} M_{p}(r,f) < \infty.$$

The normalized Lebesgue area measure on \mathbb{D} will be denoted by A, i.e.,

$$dA(z) = \frac{1}{\pi} dx dy = \frac{1}{\pi} r dr d\theta, \ z = x + iy = r e^{i\theta}.$$

Recall that for $0 and <math>\alpha > -1$, the (weighted) Bergman space $A^{p,\alpha} = A^{p,\alpha}(\mathbb{D})$ is the space of analytic functions in $L^p(\mathbb{D}, dA_\alpha)$ where

$$dA_{\alpha}(z) = (\alpha + 1) \left(1 - |z|^2\right)^{\alpha} dA(z).$$

If $f \in L^p(\mathbb{D}, dA_\alpha) \cap \mathcal{H}(\mathbb{D})$, we write

$$\|f\|_{A^{p,\alpha}} = \|f\|_{p,\alpha} = \left(\int_{\mathbb{D}} |f(z)|^p dA_{\alpha}(z)\right)^{\frac{1}{p}}.$$

It is easy to check that $f \in A^{p,\alpha}$ if and only if

$$\|f\|_{p,p,\frac{\alpha+1}{p}}^{p} = \int_{0}^{1} (1-r)^{\alpha} M_{p}^{p}(r,f) dr < \infty.$$

Note also that $||f||_{p,\alpha}$ is comparable to $||f||_{p,p,\frac{\alpha+1}{p}}$. Hence $A^{p,\alpha} = H^{p,p,\frac{\alpha+1}{p}}$. Simply $A^p = A^{p,0}$ are (unweighted) Bergman spaces.

For $t \in \mathbb{R}$ we write D^t for the sequence $\{(n+1)^t\}$, for all $n \ge 0$. If $\lambda = \{\lambda_n\}_{n=0}^{\infty}$ is a sequence and X is a sequence space (by identifying the holomorphic function $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$ with the sequence $\{\widehat{f}(n)\}_{n=0}^{\infty}$ we may consider the spaces of holomorphic functions as sequence spaces), we write

$$\lambda X = \{\lambda * x = \{\lambda_n x_n\}_{n=0}^{\infty} : x = \{x_n\}_{n=0}^{\infty} \in X\}.$$

For example $\{a_n\}_{n=0}^{\infty} \in D^1 l^1$ if and only if $\sum_{n=0}^{\infty} \frac{|a_n|}{n+1} < \infty$. The space $D^t H^{p,q,\alpha}$, for $t \neq 0$, will also be denoted by $H_{-t}^{p,q,\alpha}$.

Among the spaces $H_s^{p,q,\alpha}$, $0 < s < \infty$, the spaces $H_{1+s}^{p,q,1}$ are of independent interest, and are known as Besov spaces for $0 < q < \infty$, and as Lipschitz spaces when $q = \infty$.

We note that in [13] the spaces of functions $f \in \mathcal{H}(\mathbb{D})$ such that $D^n f \in H^{p,q,n-\alpha}$, $\alpha \in \mathbb{R}$ (equivalently $f^{(n)} \in H^{p,q,n-\alpha}$) for some (any) nonnegative integer n such that $n - \alpha > 0$ are called Besov spaces and they are denoted by $\mathcal{B}^{p,q}_{\alpha}$. Comparing with the definitions given above, $\mathcal{B}^{p,q}_{\alpha} = H^{p,q,-\alpha}$, for $\alpha < 0$, and $\mathcal{B}^{p,q}_{\alpha} = H^{p,q,1}_{1+\alpha}$, for $\alpha > 0$.

The Hilbert matrix is an infinite matrix H whose entries are $a_{n,k} = \frac{1}{n+k+1}$. We note that H as an operator on ℓ^2 was first studied by Magnus [12]. It can be also viewed as an operator on spaces of holomorphic

 $\mathbf{2}$

Download English Version:

https://daneshyari.com/en/article/5774957

Download Persian Version:

https://daneshyari.com/article/5774957

Daneshyari.com