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1. Introduction

Let H(D) be the space of all functions holomorphic in the unit disc D = {z € C: |z| < 1} endowed with
the topology of uniform convergence on compact subsets of D.
For 0 < p < oo, Hardy space HP is the space of all functions f € H(D) for which

[ flle = | fllp = sup My(r, f) < oo,
0<r<1

where

14

27
1 .
My 0) = 5 [Ietpar) o<p<os
0

Moo (r, f) = sup |f(re")].

0<t<2m
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A function f € H(D) is said to belong to the mixed norm space H?%*, 0 < p,q < 00, 0 < o < 00, if

1flamoe = | fllpga = / M, £)(1— )% Ydr | < 00,0 < q < oo

1f [ zpoere = [If

pooa = sup (1 —r)*My(r, f) < o0
0<

<r<1

The normalized Lebesgue area measure on D will be denoted by A, i.e.,
1 1 , i0
dA(z) = —dady = —rdrdl, z = x + iy = re'.
T T

Recall that for 0 < p < co and a > —1, the (weighted) Bergman space AP® = AP-*(D) is the space of
analytic functions in L?(D,dA,) where

dAn(z) = (a+1) (1 - |z|2)a dA(z).
If f e LP(D,dA,) NH(D), we write

1
P

1 lLare = [ Flpa = / FPdA(2)

D
It is easy to check that f € AP® if and only if

1

P oc yY
12 e = [ (L= 1) M3 (0 P < oc.

0

Note also that || f||,a is comparable to [|f]|, , ax1. Hence AP = HPP 5 Simply A7 = AP are (un-
P,
weighted) Bergman spaces.
For t € R we write D' for the sequence {(n + 1)}, for all n. > 0. If A = {)\,}22, is a sequence and X is

a sequence space (by identifying the holomorphic function f(z) = > f(n)z" with the sequence {f(n)}fﬁzo
n=0

we may consider the spaces of holomorphic functions as sequence spaces), we write
AX ={Axaz={Azn}nlo o= {an}yl, € X}

For example {a, }°°, € D'I! if and only if Z l + < 00. The space D'HP¢  for t # 0, will also be denoted

by HZML

Among the spaces H?%* 0 < s < 0o, the spaces Hff; are of independent interest, and are known as
Besov spaces for 0 < ¢ < oo, and as Lipschitz spaces when ¢ = oo

We note that in [13] the spaces of functions f € H(ID) such that D" f € HP2"~ % « € R (equivalently
f e gP9n=) for some (any) nonnegative integer n such that n — a > 0 are called Besov spaces and
they are denoted by BZ9. Comparing with the definitions given above, B2? = HP%~% for a < 0, and
B = HYS! for a > 0.

The Hilbert matrix is an infinite matrix i whose entries are ay, 1, = . We note that H as an operator

1
n+k+1
on (? was first studied by Magnus [12]. It can be also viewed as an operator on spaces of holomorphic
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