

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Subharmonic P^l -solutions of first order Hamiltonian systems

Chungen Liu^{a,*}, Shanshan Tang^b

- ^a School of Mathematics and Information Science, Guangzhou University, Guangzhou, PR China
- ^b School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, PR China

ARTICLE INFO

Article history: Received 19 October 2016 Available online 4 April 2017 Submitted by C.E. Wayne

 $\begin{tabular}{ll} Keywords: \\ Subharmonic P^l-solutions \\ Maslov P-index \\ Hamiltonian systems \\ \end{tabular}$

ABSTRACT

In this paper, for any symplectic matrix P, the existence of subharmonic P^l -solutions of the first order non-autonomous superquadratic Hamiltonian systems is considered. Under the convex condition, the existence of infinitely many geometrically distinct P^l -solutions is proved.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main result

For $n \in \mathbb{N}$, we recall that the symplectic group is defined as

$$Sp(2n) \equiv Sp(2n, \mathbb{R}) = \{ M \in \mathcal{L}(\mathbb{R}^{2n}) \mid M^T J M = J \},$$

where $J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, I_n is the $n \times n$ identity matrix, and $\mathcal{L}(\mathbb{R}^{2n})$ is the space of $2n \times 2n$ real matrices.

Without confusion, we shall omit the subindex of the identity matrix.

Let $P \in Sp(2n)$ and $k \in \mathbb{N}$. We say P satisfies $(P)_k$ condition, if $P^k = I$ and $P^m \neq I$ for each integer m with $1 \leq m \leq k-1$.

In this paper, we consider the $(l\tau, P^l)$ -boundary problem of first order non-autonomous Hamiltonian systems:

$$\begin{cases} \dot{x} = JH'(t, x), \ \forall x \in \mathbb{R}^{2n}, \ \forall t \in \mathbb{R}, \\ x(l\tau) = P^l x(0), \end{cases}$$
 (1.1)

E-mail addresses: liucg@nankai.edu.cn (C. Liu), ss.tang@foxmail.com (S. Tang).

[†] The first author was partially supported by the NSF of China (11471170) and the second author was partially supported by the initial Scientific Research Fund of Zhejiang Gongshang University.

^{*} Corresponding author.

where $l \in \mathbb{N}$, $\tau > 0$, $P \in Sp(2n)$ satisfying $(P)_k$ condition, $H \in C^2(\mathbb{R} \times \mathbb{R}^{2n}, \mathbb{R})$, and H'(t, x) is the gradient of H(t, x) with respect to $x \in \mathbb{R}^{2n}$. We call a solution of the problem (1.1) P^l -solution.

We denote by (\cdot,\cdot) , $|\cdot|$ the inner product and norm of \mathbb{R}^{2n} respectively, and by $\mathcal{L}_s(\mathbb{R}^{2n})$ the set of $2n \times 2n$ symmetric real matrices. For $S \in \mathcal{L}_s(\mathbb{R}^{2n})$ we denote its operator norm by ||S||. In this paper we consider the problem (1.1) with the Hamiltonian H given by

$$H(t,x) = \frac{1}{2}(\widehat{B}(t)x,x) + \widehat{H}(t,x),$$

where $\widehat{B}(t) \in C(\mathbb{R}, \mathcal{L}_s(\mathbb{R}^{2n}))$ and \widehat{H} has superquadratic behavior.

The first result for existence of subharmonic periodic solutions of Hamiltonian systems was obtained by P. Rabinowitz in [26] for the case with \widehat{B} being a constant matrix. Since then, many mathematicians made their contributions in this topic. See for example [6,7,16,17,24,30] and the reference therein. In [7], I. Ekeland and H. Hofer proved the existence of infinitely many geometrically distinct periodic solutions of the Hamiltonian systems with $\widehat{B} \equiv 0$ and H being a convex function. In [17], the first author of this paper generalized the result of [7] to the nonconvex case by using the Maslov-type index iteration theory. In [16], the first author and C. Li considered the subharmonic brake solution problem of Hamiltonian systems by using the iteration inequalities of L-Maslov type index theory.

For the problem (1.1), we consider the following conditions on \widehat{H} and \widehat{B} :

- (H1) $\widehat{H} \in C^2(\mathbb{R} \times \mathbb{R}^{2n}, \mathbb{R})$ satisfies $\widehat{H}(t+\tau, Px) = \widehat{H}(t, x), \forall t \in \mathbb{R}, x \in \mathbb{R}^{2n}$.
- (H2) There exist constants $\mu > 2$ and $R_0 > 0$ such that

$$0 < \mu \widehat{H}(t, x) \le (\widehat{H}'(t, x), x), \quad \forall t \in \mathbb{R}, \ |x| \ge R_0.$$

- (H3) $\hat{H}(t,x) = o(|x|^2)$ at x = 0.
- (H4) $\widehat{H}(t,x) \ge 0$ for all $t \in \mathbb{R}, x \in \mathbb{R}^{2n}$.
- (H5) There exist constants θ , $R_1 > 0$ such that

$$|\widehat{H}'(t,x)| \le \theta(\widehat{H}'(t,x),x), \quad \forall t \in \mathbb{R}, \ |x| > R_1.$$

- (H6) $\hat{H}''(t,x) > 0$ for all $x \in \mathbb{R}^{2n} \setminus \{0\}, t \in \mathbb{R}$.
- (H7) $\widehat{B}(t) \in C(\mathbb{R}, \mathcal{L}_s(\mathbb{R}^{2n}))$ is semi-positive definite for all $t \in [0, \tau]$ and satisfies $P^T \widehat{B}(t + \tau) P = \widehat{B}(t)$.

In the main results of this paper we need the following two numbers β and ω . $\beta \geq 0$ is defined by

$$\beta = \max_{t \in [0, k\tau]} \|\widehat{B}(t)\|.$$

So there holds $(\widehat{B}(t)z, z) \leq \beta |z|^2$, $t \in [0, k\tau]$ and any $z \in \mathbb{R}^{2n}$. In [23] we got a symplectic path γ_P satisfying $\gamma_P(0) = I$, $\gamma_P(\tau) = P$ and $-J\gamma_P(t)^{-1}\dot{\gamma}_P(t)$ is negative definite for all $t \in [0, \tau]$. The number $\omega \geq 0$ is defined by

$$\omega = \max_{t \in [0,\tau]} \| \gamma_P(t)^T \widehat{B}(t) \gamma_P(t) + J \gamma_P(t)^{-1} \dot{\gamma}_P(t) \|.$$

Definition 1.1. For each positive integer s, we define two sequences $\{a_i^s\}_{i=1}^{\infty}$ and $\{b_j^s\}_{j=1}^{\infty}$ by

$$a_1^s = s, \quad a_{i+1}^s = (k+1)a_i^s, \quad \forall i \in \mathbb{N},$$
 (1.2)

$$b_1^s = s, \quad b_{j+1}^s = (2k+1)b_j^s, \quad \forall j \in \mathbb{N}.$$
 (1.3)

Download English Version:

https://daneshyari.com/en/article/5774963

Download Persian Version:

https://daneshyari.com/article/5774963

Daneshyari.com