On certain multi-variable rational identities derived from the rigidity of signature of manifolds

Victor J.W. Guo ${ }^{\text {a,* }}$, Fei Han ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
b Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

A R T I C L E I N F O

Article history:

Received 14 January 2017
Available online 5 April 2017
Submitted by M.J. Schlosser

Keywords:

Signature
Rigidity
Fixed point theorem
q-Lucas theorem

Abstract

Song derives certain multi-variable rational identities by studying torus actions on some homogeneous manifolds and applying the Atiyah-Bott-Segal-Singer Lefschetz fixed point theorem. In this paper, we give a direct proof of these rational identities by using the q-Lucas theorem. Moreover, we also give a similar new rational identity. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let M be a $4 m$ dimensional closed (compact and without boundary) oriented smooth manifold. Let $H^{2 m}(M, \mathbb{R})$ denote the middle cohomology group of M with real coefficients. One can introduce a bilinear form

$$
B(x, y)=\langle x \cup y,[M]\rangle, \quad x, y \in V=H^{2 m}(M, \mathbb{R})
$$

This is a symmetric bilinear form on V. By the Poincare duality, it is non-degenerate. Let p_{+}and p_{-}be the number of positive and negative eigenvalues of B respectively. Define

$$
\sigma(M)=p_{+}-p_{-}
$$

When the dimension of M is not divisible by 4 , we define $\sigma(M)$ to be 0 .
As cohomology is a homotopy invariant of M and $\sigma(M)$ is determined by cohomology, it is a homotopy invariant. Moreover, Thom [15] has shown that $\sigma(M)$ is also a bordism invariant of M. The integer $\sigma(M)$

[^0]is called the signature of M. This topological number plays a significant role in the geometry and topology of manifolds. To cite some examples, it was used to construct 4 dimensional topological manifolds, which do not admit smooth structures; it was used to construct Milnor's 7 dimensional exotic sphere, i.e., smooth manifolds that are homeomorphic, but not diffeomorphic, to S^{7}; it appears in surgery theory, which provides important tools for classification of high-dimensional manifolds.

The signature has profound and rich links to various mathematical theories. The Hirzebruch signature theorem [8] asserts that $\sigma(M)$ is equal to the L-genus of M, which is constructed as a polynomial of Pontryagin classes in a way associated to the power series $\frac{x}{\tanh x}$ and therefore relates signature to the theory of characteristic classes. Moreover, by equipping the manifold M with a Riemannian metric g, one finds that $\sigma(M)$ is equal to the index of a first-order elliptic differential operator d_{s}, called the signature operator of the Riemannian manifold (M, g) and therefore relates the signature to differential geometry and analysis on manifolds. The celebrated Atiyah-Singer index theorem asserts that the index of the operator d_{s} is equal to the L-genus of M, making the Hirzebruch signature theorem a corollary of the Atiyah-Singer index theorem.

In this paper, we study some links of signature to combinatorics. More precisely, we study some combinatorics derived from the signature of certain homogeneous manifolds.

Let $G_{k}\left(\mathbb{C}^{n}\right)$ denote the Grassmannian manifold of k dimensional complex linear subspaces of \mathbb{C}^{n}. Then $G_{k}\left(\mathbb{C}^{n}\right)$ is compact and of complex dimension $k(n-k)$ or real dimension $2 k(n-k)$. It is a homogeneous manifold, which can be identified with $U(n) / U(k) \times U(n-k)$. The signature of $G_{k}\left(\mathbb{C}^{n}\right)$ is known to be

$$
\sigma\left(G_{k}\left(\mathbb{C}^{n}\right)\right)= \begin{cases}0 & \text { if } k(n-k) \text { is odd } \\ \binom{\left\lfloor\frac{n}{2}\right\rfloor}{\left\lfloor\frac{k}{2}\right\rfloor} & \text { if } k(n-k) \text { is even. }\end{cases}
$$

There are several approaches to compute the signature of $G_{k}\left(\mathbb{C}^{n}\right)$. The first method is using the Hodge theory (see [8]). The second method is using the Schubert calculus (see [5]). Other methods use various kinds of fixed point formulas and the rigidity of the signature. Let M be a compact smooth manifold with an action of a connected Lie group G. Let E and F be two vector bundles on M with the lifted G-actions. Let $P: \Gamma(E) \rightarrow \Gamma(F)$ be an elliptic operator commuting with the G-action. The equivariant index of P is defined to be

$$
\operatorname{ind}(P, h)=\operatorname{tr}\left(\left.h\right|_{\text {Ker } P}\right)-\operatorname{tr}\left(\left.h\right|_{\text {Coker } P}\right), \forall h \in G,
$$

which is a class function on G. The elliptic operator P is called rigid if $\operatorname{ind}(P, h)$ is a constant independent of $h \in G$. The signature operator d_{s} is rigid and therefore

$$
\sigma(M)=\operatorname{ind}\left(d_{s}, \operatorname{id}\right)=\operatorname{ind}\left(d_{s}, h\right), \forall h \in G .
$$

The fixed point theorems then express the right-hand side of the above identity by the data on the fixed point sets of h, and therefore provide tools to compute $\sigma(M)$. In [12], a self-mapping $f: G_{k}\left(\mathbb{C}^{n}\right) \rightarrow G_{k}\left(\mathbb{C}^{n}\right)$, which is homotopic to the identity map, is constructed and then the Atiyah-Bott Lefschetz fixed point formula [2] is applied to the signature complex (in this case also called the Atiyah-Singer G-signature theorem [3]) to get $\sigma\left(G_{k}\left(\mathbb{C}^{n}\right)\right)$. In [9], Hirzebruch and Slodowy consider involutions on homogeneous manifolds and express the signature of the homogeneous manifold as the signature of self-intersection submanifold of the involution when it is homotopic to the identity. This provides another method to compute $\sigma\left(G_{k}\left(\mathbb{C}^{n}\right)\right)$. In [13], Song considers the torus action on homogeneous manifold G / H with the torus being the common maximal torus of G and H, and analyzes the fixed points of this action and writes down the signature of G / H by the data

https://daneshyari.com/en/article/5774964

Download Persian Version:
https://daneshyari.com/article/5774964

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jwguo@hytc.edu.cn (V.J.W. Guo), mathanf@nus.edu.sg (F. Han).
 http://dx.doi.org/10.1016/j.jmaa.2017.03.087
 0022-247X/© 2017 Elsevier Inc. All rights reserved.

