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In this paper, the 3-D compressible MHD equations without thermal conductivity 
are considered. The existence of unique local classical solutions to the initial-
boundary value problem with Dirichlet or Navier-Slip boundary condition is 
established when the initial data are arbitrarily large, contains vacuum and satisfies 
some initial layer compatibility condition. The initial density needs not to be 
bounded away from zero and may vanish in some open set.
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1. Introduction

Magnetohydrodynamics is that part of the mechanics of continuous media which studies the motion of 
electrically conducting media in the presence of a magnetic field. The dynamic motion of fluid and magnetic 
field interact strongly on each other, so the hydrodynamic and electrodynamic effects are coupled. The 
applications of magnetohydrodynamics cover a wide range of physical objects, from liquid metals to cosmic 
plasmas, for example, the intensely heated and ionized fluids in an electromagnetic field in astrophysics 
and plasma physics. In 3-D space, the compressible magnetohydrodynamic (MHD) equations in a domain 
Ω ⊂ R

3 can be written as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ht − rot(u×H) = −rot
( 1
σ

rotH
)
,

divH = 0,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) + ∇P = divT + rotH ×H,

(ρe)t + div(ρeu) − κ�θ + Pdivu = div(uT) − udivT + 1
σ
|rotH|2.

(1.1)
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In this system, x ∈ Ω is the spatial coordinate; t ≥ 0 is the time variable; H = (H(1), H(2), H(3)) ∈ R
3 is 

the magnetic field; ρ is the density; u = (u(1), u(2), u(3)) ∈ R
3 is the velocity of fluids; e is the specific internal 

energy; rotH = ∇ ×H denotes the rotation of the magnetic field; 0 < σ ≤ ∞ is the electric conductivity 
coefficient; κ ≥ 0 is the thermal conductivity coefficient; P is the pressure satisfying

P = Rρθ = (γ − 1)ρe, with γ > 1, (1.2)

where θ is the absolute temperature, R is a positive constant, γ is the adiabatic index; T is the stress tensor 
given by

T = 2μD(u) + λdivuI3, D(u) = ∇u + (∇u)�

2 , (1.3)

where D(u) is the deformation tensor, I3 is the 3 × 3 unit matrix, μ > 0 is the shear viscosity coefficient, 
λ + 2

3μ ≥ 0 is the bulk viscosity coefficient. Although the electric field E doesn’t appear in system (1.1), it 
is indeed induced according to a relation

E = 1
σ

rotH − u×H

by moving the conductive flow in the magnetic field.
However, when κ = 0, system (1.4) for classical solutions can be written into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ht − rot(u×H) = −rot
( 1
σ

rotH
)
,

divH = 0,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) + ∇P = divT + rotH ×H,

Pt + u · ∇P + γPdivu = (γ − 1)(div(uT) − udivT) + γ − 1
σ

|rotH|2.

(1.4)

The initial condition is given as

(H, ρ, u, P )|t=0 = (H0(x), ρ0(x), u0(x), P0(x)), x ∈ Ω. (1.5)

We only consider the following two types of boundary conditions in this paper for simplicity:
(1) Dirichlet boundary condition for (u, H): Ω ∈ R

3 is a bounded smooth domain and

u|∂Ω = 0, when σ = +∞; (u,H)|∂Ω = (0, 0), when 0 < σ < +∞. (1.6)

(2) Navier-slip boundary condition for (u, H): Ω ∈ R
3 is bounded, simply connected, smooth domain, 

and

(u · n, rotu× n,H · n, rotH × n)|∂Ω = (0, 0, 0, 0), when 0 < σ < +∞, (1.7)

where ∇ × u denotes the vorticity field of fluids and n is the unit outer normal vector of ∂Ω. Actually, the 
similar existence result when Ω = R

3, half space R2 ×R
+ or exterior domain with smooth boundary can be 

obtained via the similar argument used in this paper.
Throughout this paper, we adopt the following simplified notations for the standard homogeneous and 

inhomogeneous Sobolev space:
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