Contents lists available at ScienceDirect

ELSEVIER

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On distribution of local dimensions of doubling measures on Euclidean space $\stackrel{\bigstar}{\approx}$

^a Department of Mathematics, Huazhong University Of Science And Technology, Wuhan 430074, China

^b Department of Mathematics, Hubei University of Technology, Wuhan 430068, China

^c Department of Mathematics, Hubei University, Wuhan 430062, China

ARTICLE INFO

Article history: Received 14 February 2017 Available online 5 April 2017 Submitted by J.A. Ball

Keywords: Distribution Local dimension Doubling measure

ABSTRACT

We prove that for every nonnegative, increasing and right continuous function g on [0, n] with g(n) = 1 and $g(\epsilon) = 0$ for some $\epsilon \in (0, n)$ there exists a doubling probability measure μ on $[0, 1]^n$ such that the distribution G_{μ} of the lower local dimension of μ is g.

@ 2017 Published by Elsevier Inc.

1. Introduction

Let μ be a finite Borel measure on $[0, 1]^n$. We define the lower and upper local dimension of μ at $x \in [0, 1]^n$ by

$$\underline{\dim}_{loc}\mu(x) = \liminf_{r \to 0} \frac{\log \mu(B(x, r))}{\log r}$$

and

$$\overline{\dim}_{loc}\mu(x) = \limsup_{r \to 0} \frac{\log \mu(B(x,r))}{\log r},$$

here and after B(x,r) denotes the open ball with center x and radius r > 0. And we say that the local dimension exists at x if these are equal, writing $\dim_{loc} \mu(x)$ for the common value. Note that $\dim_{loc} \mu(x) = 0$ if $\mu\{x\} > 0$, and $\dim_{loc} \mu(x) = \infty$ if $\mu(B(x,r)) = 0$ for some r > 0.

CrossMark

 $^{^{\}ddagger}$ Supported by NSFC (Nos. 11271114 and 11671189).

^{*} Corresponding author at: Department of Mathematics, Hubei University of Technology, Wuhan 430068, China. E-mail addresses: pengfengji@sina.com (F. Peng), sywen_65@163.com (S. Wen).

It is well known that the lower local dimension is closely related to the Hausdorff dimension by the following Theorem A (see Proposition 2.3 in [1]).

Theorem A. Let μ be a Borel probability measure on $[0, 1]^n$. Then

(a) $\dim_H E \ge s$, if $E \subset \{x \in [0,1]^n : \underline{\dim}_{loc}\mu(x) \ge s\}$ and $\mu(E) > 0$.

(b)
$$\dim_H \{x \in [0,1]^n : \underline{\dim}_{loc} \mu(x) \le s\} \le$$

(b) $\dim_H \{x \in [0, 1] : \underline{\dim}_{loc} \mu(x) \ge s_f \ge s.$ (c) $\dim_H E = s$, if $E = \{x \in [0, 1]^n : \underline{\dim}_{loc} \mu(x) = s\}$) and $\mu(E) > 0$.

Theorem A implies that $\underline{\dim}_{loc}\mu(x) \in [0, n]$ for μ -almost all $x \in [0, 1]^n$. Define

$$G_{\mu}(s) = \mu\{x \in [0,1]^n : \underline{\dim}_{loc}\mu(x) \le s\}, \ s \in [0,n].$$
(1)

Then $G_{\mu}(s)$ is nonnegative, increasing, and right continuous with $G_{\mu}(n) = 1$. The function $G_{\mu}(s)$ is called the distribution of the lower local dimension of μ . It is well known that for every nonnegative, increasing and right continuous function g on [0, n] with q(n) = 1 there exists a Borel probability measure μ on $[0, 1]^n$ such that $G_{\mu} = g$; see for example Proposition 10.12 in [1]. That's to say, the distribution of the lower local dimension of μ can be arbitrary.

In this paper we study the distribution of the local dimension of a doubling measure on $[0,1]^n$. Recall that a Borel measure μ on a metric space X is called doubling, if there is a constant $C \geq 1$ such that

$$0 < \mu(B(x,2r)) \le C\mu(B(x,r)) < +\infty \tag{2}$$

for every ball B(x,r) in X. In this case, μ is said to be C-doubling. It is known that every complete doubling metric space carries a doubling measure; see Volberg-Konyagin [8] and Luukkainen-Saksman [6]. Also, the singularity of doubling measures was studied. Kaufman–Wu [4] proved that for every compact doubling metric space X with no isolated points and for every doubling measure μ on X, there exists a doubling measure on X singular with μ . Wu [11] showed that for every $\alpha > 0$ a doubling measure on a compact doubling metric space can be supported on a set of Hausdorff dimension at most α . The same result holds for packing dimension, see Käenmäki–Rajala–Suomala [3]. Our main result is the following theorem.

Theorem 1. The distribution G_{μ} of the lower local dimension of a doubling probability measure μ on $[0,1]^n$ is a nonnegative, increasing and right continuous function on [0,n] with $G_{\mu}(n) = 1$ and $G_{\mu}(\epsilon) = 0$ for some $\epsilon \in (0, n)$. Conversely, for every nonnegative, increasing and right continuous function g on [0, n] with g(n) = 1 and $g(\epsilon) = 0$ for some $\epsilon \in (0, n)$ there exists a doubling probability measure μ on $[0, 1]^n$ such that $G_{\mu} = g.$

Theorem 1 together with Theorem A shows that doubling measures on $[0,1]^n$ can be of any singular structure permitted by the assumption of Theorem 1. For the other works on doubling measures we refer to [5,7,9,10].

2. Preliminary

The proof of Theorem 1 is based on the following two lemmas.

Lemma 1. Let μ be a finite Borel measure on $[0, 1]^n$ and $s \in [0, n]$. Then

$$\mu(\underline{E}_{< s}) = \sup\{\mu(E) : E \subset [0, 1]^n \text{ and } \dim_H E \le s\},\tag{3}$$

where $\underline{E}_{\leq s} = \{x \in [0,1]^n : \underline{\dim}_{loc}\mu(x) \leq s\}$. In other words, the set $\underline{E}_{\leq s}$ is of maximal μ -measure among those of Hausdorff dimension at most s.

Download English Version:

https://daneshyari.com/en/article/5774972

Download Persian Version:

https://daneshyari.com/article/5774972

Daneshyari.com