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This paper is devoted to the investigation of an unstirred chemostat system modeling 
the interactions of two essential nutrients (i.e., nitrogen and phosphorus), harmful 
algae (i.e., P. parvum and cyanobacteria), and a small-bodied zooplankton in an 
ecosystem. To obtain a weakly repelling property of a compact and invariant set on 
the boundary, we introduce an associated elliptic eigenvalue problem. It turns out 
that the model system admits a coexistence steady state and is uniformly persistent 
provided that the trivial steady state, two semi-trivial steady states and a global 
attractor on the boundary are all weak repellers.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Harmful algal blooms (HABs) have been a serious problem in many coastal and inland waters world-
wide [4,7]. It was known that the algal species, Prymnesium parvum (golden algae), is responsible for 
fish-killing problem, and results in major economic damage [5]. In a reservoir, P. parvum competes for 
nitrogen and phosphorus with cyanobacteria, which also excrete allelopathic cyanotoxins that inhibit the 
growth of P. parvum. A small-bodied zooplankton population consume both types of algae for growth, but 
the dissolved toxins produced by P. parvum also inhibit zooplankton ingestion, growth and reproduction. 
In order to understand such complex interactions and reactions in an ecosystem, the authors in [6] pro-

* Corresponding author.
E-mail addresses: fbwang@mail.cgu.edu.tw, fbwang0229@gmail.com (F.-B. Wang).

1 Research supported in part by Ministry of Science and Technology, Taiwan.
2 Research supported in part by Ministry of Science and Technology, Taiwan; and National Center for Theoretical Sciences 

(NCTS), National Taiwan University; and Chang Gung Memorial Hospital under grants BMRPD18 and NMRPD5F0541.
3 Research supported in part by the NSERC of Canada.

http://dx.doi.org/10.1016/j.jmaa.2017.02.034
0022-247X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.02.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:fbwang@mail.cgu.edu.tw
mailto:fbwang0229@gmail.com
http://dx.doi.org/10.1016/j.jmaa.2017.02.034


JID:YJMAA AID:21159 /FLA Doctopic: Partial Differential Equations [m3L; v1.204; Prn:27/02/2017; 15:03] P.2 (1-19)
2 S.-B. Hsu et al. / J. Math. Anal. Appl. ••• (••••) •••–•••

posed a well-mixed chemostat system to explore the dynamics of nutrients, P. parvum, toxin(s) produced 
by P. parvum, cyanobacteria, cyanotoxin(s) produced by cyanobacteria, and zooplankton.

A natural approach to the spatial heterogeneity is to use “unstirred” chemostat, where we will remove the 
assumption that interactions of nutrients and species proceeds in a well-mixed, spatially uniform habitat. 
The unstirred chemostat can be regarded as a spatially distributed habitat in which inflow of nutrients occurs
at one point and outflow at another, with diffusive transport of nutrients and organisms between these points 
[3,14]. For simplicity, we ignore the equations of toxins proposed in [6] and assume that inhibitory effects 
are directly determined by the densities of harmful algae. Accordingly, we modify the model in [6] to obtain 
the following unstirred chemostat model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂R
∂t = d∂2R

∂x2 − q1rf1(R,S)u1e
−αu2 − q2rf2(R,S)u2, x ∈ (0, 1), t > 0,

∂S
∂t = d∂2S

∂x2 − q1sf1(R,S)u1e
−αu2 − q2sf2(R,S)u2, x ∈ (0, 1), t > 0,

∂u1
∂t = d∂2u1

∂x2 + f1(R,S)u1e
−αu2 − q1g1(u1)Z, x ∈ (0, 1), t > 0,

∂u2
∂t = d∂2u2

∂x2 + f2(R,S)u2 − q2g2(u2)Z, x ∈ (0, 1), t > 0,
∂Z
∂t = d∂2Z

∂x2 + G(u1, u2)Z, x ∈ (0, 1), t > 0,

(1.1)

with boundary conditions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂R
∂x (0, t) = −R(0), ∂R

∂x (1, t) + γR(1, t) = 0, t > 0,
∂S
∂x (0, t) = −S(0), ∂S

∂x (1, t) + γS(1, t) = 0, t > 0,
∂ui

∂x (0, t) = ∂ui

∂x (1, t) + γui(1, t) = 0, t > 0, i = 1, 2,
∂Z
∂x (0, t) = ∂Z

∂x (1, t) + γZ(1, t) = 0, t > 0,

(1.2)

and initial conditions
{
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, x ∈ (0, 1),
ui(x, 0) = u0

i (x) ≥ 0, Z(x, 0) = Z0(x) ≥ 0, x ∈ (0, 1), i = 1, 2.
(1.3)

Here R(x, t) and S(x, t) denote the complementary nutrient (nitrogen and phosphorus) concentrations at 
position x and time t; u1(x, t) and u2(x, t) represent the densities of P. parvum (golden algae) and cyanobac-
teria, respectively; Z(x, t) represents the density of small-bodied zooplankton population. R(0) and S(0) are 
input concentration of nutrients; qir and qis, i = 1, 2, are the constant nutrient quotas; qi, i = 1, 2, is the 
constant algal quota; the constant γ in (1.2) represents the washout constant. We also assume that nutrients 
and algal species have the same diffusion coefficient d. The term e−αu2 describes the inhibitory effect on 
u1(x, t) from u2(x, t). The response function are given by fi(R, S) = min{hir(R), his(S)}, i = 1, 2. The 
nonlinear functions hir(R) (his(S)) describe the nutrient uptake and growth rates of species i when only 
nutrient R (S) is limiting. We assume that the functions hir(R) and his(S) satisfy

hir(0) = 0, h′
ir(R) > 0 ∀ R > 0, hir ∈ C2, i = 1, 2.

An usual example is the Monod function

hir(R) = mirR

Kir + R
, his(S) = misS

Kis + S
.

Both types of algae are consumed by zooplankton, and consumption of the algae supports the growth of 
the zooplankton. Further, P. parvum u1(x, t) also inhibits the growth of zooplankton. The function g1(u1)
represents the relationship between zooplankton and P. parvum, which simultaneously include positive and 
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