ARTICLE IN PRESS

J. Math. Anal. Appl. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

YJMAA:21188

www.elsevier.com/locate/jmaa

Existence and multiplicity of positive solutions for a perturbed semilinear elliptic equation with two Hardy–Sobolev critical exponents $\stackrel{\bigstar}{\approx}$

Cong Wang, Yan-Ying Shang*

 $School \ of \ Mathematics \ and \ Statistics, \ Southwest \ University, \ Chongqing \ 400715, \ People's \ Republic \ of \ China$

ARTICLE INFO

Article history: Received 14 November 2016 Available online xxxx Submitted by B. Bongiorno

Keywords: Two Hardy–Sobolev critical exponents Ekeland's variational principle Positive solutions Strong maximum principle

ABSTRACT

In this paper, by applying Ekeland's variational principle and strong maximum principle, we investigate the existence and multiplicity of positive solutions for a perturbed semilinear elliptic equation with two critical Hardy–Sobolev exponents and boundary singularities.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we consider the following semilinear elliptic equation

$$\begin{cases} -\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^*(s_1)-2}}{|x|^{s_1}} u + \frac{|u|^{2^*(s_2)-2}}{|x|^{s_2}} u + \lambda f(x, u), & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$
(1)

where Ω is an open bounded domain in \mathbb{R}^N $(N \ge 3)$ with \mathbb{C}^2 boundary $\partial\Omega$ and $0 \in \partial\Omega$, $0 \le \mu < \overline{\mu} \stackrel{\triangle}{=} \frac{(N-2)^2}{4}$, $0 \le s_1, s_2 < 2, 2^*(s_i) = \frac{2(N-s_i)}{N-2}$ (i = 1, 2) are the Hardy–Sobolev critical exponents and $2^*(0) = 2^* = \frac{2N}{N-2}$ is the Sobolev critical exponent, $\lambda > 0$ is a real parameter, since we consider the existence of positive solutions of the problem (1), so we may define f(x,t) = 0 for $x \in \Omega, t \le 0$.

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2017.02.063 0022-247X/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: C. Wang, Y.-Y. Shang, Existence and multiplicity of positive solutions for a perturbed semilinear elliptic equation with two Hardy–Sobolev critical exponents, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.02.063

 $^{^{*}}$ Supported by the National Natural Science Foundation of China (No. 11471267), the Fundamental Research Funds for the Central Universities (No. XDJK2016C119).

E-mail address: shangyan@swu.edu.cn (Y.-Y. Shang).

 $\mathbf{2}$

ARTICLE IN PRESS

C. Wang, Y.-Y. Shang / J. Math. Anal. Appl. \cdots (\cdots) \cdots)

The functional corresponding to problem (1) is

$$I(u) = \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2} \right) dx - \frac{1}{2^*(s_1)} \int_{\Omega} \frac{(u^+)^{2^*(s_1)}}{|x|^{s_1}} dx - \frac{1}{2^*(s_2)} \int_{\Omega} \frac{(u^+)^{2^*(s_2)}}{|x|^{s_2}} dx - \lambda \int_{\Omega} F(x, u^+) dx,$$

where $u \in H_0^1(\Omega), u^+ = \max\{u, 0\}, F(x, t) = \int_0^t f(x, \tau) d\tau$. It is well known that there exists a one to one correspondence between the nonnegative solutions of (1) and the critical points of I on $H_0^1(\Omega)$. More precisely we say that $u \in H_0^1(\Omega)$ is a weak solution of problem (1), if for any $v \in H_0^1(\Omega)$, there holds

$$\langle I'(u), v \rangle = \int_{\Omega} \left(\nabla u \nabla v - \mu \frac{uv}{|x|^2} \right) dx - \int_{\Omega} \frac{(u^+)^{2^*(s_1)-1}}{|x|^{s_1}} v dx - \int_{\Omega} \frac{(u^+)^{2^*(s_2)-1}}{|x|^{s_2}} v dx - \lambda \int_{\Omega} f(x, u^+) v dx = 0.$$

It follows from the Hardy inequality, for $0 \le \mu < \overline{\mu}$, $||u|| := \left(\int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2}\right) dx\right)^{1/2}$ is well defined on $H_0^1(\Omega)$ and $||\cdot||$ is comparable to the usual norm of $H_0^1(\Omega)$ (see[9]). However, if $\mu = \overline{\mu}$, the operator $-\Delta - (N-2)^2/(4|x|^2)$ is not equivalent to $-\Delta$ any more (see [22]). In this paper, we assume that $0 \le \mu < \overline{\mu}$ and define the best Hardy–Sobolev constant by

$$V_{\mu,s_i}(\Omega) = \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} (|\nabla u|^2 - \mu \frac{u^2}{|x|^2}) dx}{\left(\int_{\Omega} \frac{|u|^{2^*(s_i)}}{|x|^{s_i}} dx\right)^{\frac{2}{2^*(s_i)}}}, i = 1, 2.$$
(2)

In the past twenty years, the singular equations with Hardy–Sobolev critical exponent or Hardy term have been studied by a large number of celebrated boffins. On the one hand, a lot of boffins work on Hardy–Sobolev critical exponent under the case of $0 \in \Omega$, such as [6–8] and the references therein. On the other hand, boundary singularities problems $(0 \in \partial \Omega)$ have widely aroused people's interest, such as [19]. Ghoussoub with Kang [11] and Ghoussoub with Robert [12] firstly investigated the case of $0 \in \partial \Omega$, such problems can be found in [4,11–13,15,18,21,25] and so on. In particular, in [11], Ghoussoub and Kang deduced that the best Hardy–Sobolev constant can be obtained in $H_0^1(\Omega)$ when $N \ge 4$ and the principle curvatures of $\partial \Omega$ are negative. Besides, if f(x,t) = t in problem (4), they also proved the existence a weak solution under the assumptions $N \ge 4$, $\mu = 0$, $0 < \lambda < \lambda_1$ (the first eigenvalue of $-\Delta$ on $H_0^1(\Omega)$) and the principle curvatures are non-positive. In [25], Yang and Chen attained two positive solutions about problem (4) with $f(x,t) = t^{q-1}$, 0 < q < 1. In [26], Zhong and Zou attained a ground state solution and a positive solution with $f(x,t) = \frac{t^q}{|x|^s}$, $0 \le s < 2$ and $1 < q \le 2^*(s)$.

In recent years, the elliptic problems with multiple Hardy–Sobolev exponents have been considered widely. For the bounded domain $\Omega \subset \mathbb{R}^N (N \geq 3)$, the following problem (3) has been studied by a lot of scholars:

$$\begin{cases} -\Delta u - \mu \frac{u^{q-1}}{|x|^s} = \sum_{j=1}^l \lambda_j \frac{u^{2^*(s_j)-1}}{|x|^{s_j}} + \lambda f(x, u), & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(3)

where $\mu, \lambda_i (i = 1, 2, \dots, l), \lambda$ are the real parameters. Li and Lin in [17] investigated (3) in the case of $\mu = 0, l = 2, 0 \leq s_2 < s_1 \leq 2, 0 \neq \lambda \in R$ and $0 \in \partial \Omega$. They gave the existence and nonexistence of least-energy solution. Besides, they also proved the existence and nonexistence for positive entire solutions in half space under different assumptions. In [23], Wang and Xiang studied the quasilinear elliptic problem, by an approximation argument, they obtained infinitely many solutions of (3) under the certain conditions. In [24], Wang and Yang applied an abstract theorem getting infinitely many sign-changing solutions for problem (3) with two critical Hardy–Sobolev-Maz'ya critical exponents and $\mu = 0, \lambda f(x, u) = a(x)u$.

Download English Version:

https://daneshyari.com/en/article/5775014

Download Persian Version:

https://daneshyari.com/article/5775014

Daneshyari.com