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In this paper, by applying Ekeland’s variational principle and strong maximum 
principle, we investigate the existence and multiplicity of positive solutions for a 
perturbed semilinear elliptic equation with two critical Hardy–Sobolev exponents 
and boundary singularities.
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1. Introduction and main results

In this paper, we consider the following semilinear elliptic equation

⎧⎨
⎩−Δu− μ

u

|x|2 = |u|2∗(s1)−2

|x|s1 u + |u|2∗(s2)−2

|x|s2 u + λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1)

where Ω is an open bounded domain in RN (N ≥ 3) with C2 boundary ∂Ω and 0 ∈ ∂Ω, 0 ≤ μ < μ
�= (N−2)2

4 , 
0 ≤ s1, s2 < 2, 2∗(si) = 2(N−si)

N−2 (i = 1, 2) are the Hardy–Sobolev critical exponents and 2∗(0) = 2∗ = 2N
N−2 is 

the Sobolev critical exponent, λ > 0 is a real parameter, since we consider the existence of positive solutions 
of the problem (1), so we may define f(x, t) = 0 for x ∈ Ω, t ≤ 0.
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The functional corresponding to problem (1) is

I(u) = 1
2

∫
Ω

(
|∇u|2 − μ

u2

|x|2
)
dx− 1

2∗(s1)

∫
Ω

(u+)2∗(s1)

|x|s1 dx− 1
2∗(s2)

∫
Ω

(u+)2∗(s2)

|x|s2 dx− λ

∫
Ω

F (x, u+)dx,

where u ∈ H1
0 (Ω), u+ = max{u, 0}, F (x, t) =

∫ t

0 f(x, τ)dτ . It is well known that there exists a one to 
one correspondence between the nonnegative solutions of (1) and the critical points of I on H1

0 (Ω). More 
precisely we say that u ∈ H1

0 (Ω) is a weak solution of problem (1), if for any v ∈ H1
0 (Ω), there holds

〈I ′(u), v〉 =
∫
Ω

(
∇u∇v − μ

uv

|x|2
)
dx−

∫
Ω

(u+)2∗(s1)−1

|x|s1 vdx−
∫
Ω

(u+)2∗(s2)−1

|x|s2 vdx− λ

∫
Ω

f(x, u+)vdx = 0.

It follows from the Hardy inequality, for 0 ≤ μ < μ, ‖u‖ :=
(∫

Ω

(
|∇u|2 − μ u2

|x|2
)

dx
)1/2

is well defined 

on H1
0 (Ω) and ‖ · ‖ is comparable to the usual norm of H1

0 (Ω) (see[9]). However, if μ = μ, the operator 
−Δ − (N −2)2/(4|x|2) is not equivalent to −Δ any more (see [22]). In this paper, we assume that 0 ≤ μ < μ

and define the best Hardy–Sobolev constant by

Vμ,si(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω(|∇u|2 − μ u2

|x|2 )dx(∫
Ω

|u|2∗(si)

|x|si dx
) 2

2∗(si)
, i = 1, 2. (2)

In the past twenty years, the singular equations with Hardy–Sobolev critical exponent or Hardy term 
have been studied by a large number of celebrated boffins. On the one hand, a lot of boffins work on 
Hardy–Sobolev critical exponent under the case of 0 ∈ Ω, such as [6–8] and the references therein. On 
the other hand, boundary singularities problems (0 ∈ ∂Ω) have widely aroused people’s interest, such as 
[19]. Ghoussoub with Kang [11] and Ghoussoub with Robert [12] firstly investigated the case of 0 ∈ ∂Ω, 
such problems can be found in [4,11–13,15,18,21,25] and so on. In particular, in [11], Ghoussoub and Kang 
deduced that the best Hardy–Sobolev constant can be obtained in H1

0(Ω) when N ≥ 4 and the principle 
curvatures of ∂Ω are negative. Besides, if f(x, t) = t in problem (4), they also proved the existence a weak 
solution under the assumptions N ≥ 4, μ = 0, 0 < λ < λ1 (the first eigenvalue of −Δ on H1

0 (Ω)) and the 
principle curvatures are non-positive. In [25], Yang and Chen attained two positive solutions about problem 
(4) with f(x, t) = tq−1, 0 < q < 1. In [26], Zhong and Zou attained a ground state solution and a positive 
solution with f(x, t) = tq

|x|s , 0 ≤ s < 2 and 1 < q ≤ 2∗(s).
In recent years, the elliptic problems with multiple Hardy–Sobolev exponents have been considered widely. 

For the bounded domain Ω ⊂ RN (N ≥ 3), the following problem (3) has been studied by a lot of scholars:

⎧⎪⎨
⎪⎩

−Δu− μ
uq−1

|x|s =
l∑

j=1
λj

u2∗(sj)−1

|x|sj + λf(x, u), in Ω,

u = 0, on ∂Ω,

(3)

where μ, λi(i = 1, 2, · · · , l), λ are the real parameters. Li and Lin in [17] investigated (3) in the case of 
μ = 0, l = 2, 0 ≤ s2 < s1 ≤ 2, 0 
= λ ∈ R and 0 ∈ ∂Ω. They gave the existence and nonexistence of 
least-energy solution. Besides, they also proved the existence and nonexistence for positive entire solutions 
in half space under different assumptions. In [23], Wang and Xiang studied the quasilinear elliptic problem, 
by an approximation argument, they obtained infinitely many solutions of (3) under the certain conditions. 
In [24], Wang and Yang applied an abstract theorem getting infinitely many sign-changing solutions for 
problem (3) with two critical Hardy–Sobolev-Maz’ya critical exponents and μ = 0, λf(x, u) = a(x)u. 
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