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Global attractors for nonlinear parabolic equations with
nonstandard growth and irregular data

Weisheng Niu∗, Xiaojuan Chai
School of Mathematical Sciences, Anhui University, Hefei 230601, China

Abstract

We investigate the large time behavior of solutions to the following nonlinear parabolic
equations ⎧⎪⎨

⎪⎩
ut − div (|∇u|p(x)−2∇u) + f(x, u) = g in Ω× R

+,

u = 0 on ∂Ω× R
+,

u(x, 0) = u0(x) in Ω,

where u0, g ∈ L1(Ω). We first provide the existence and uniqueness of an entropy solution for
the problem. Then through some delicate analysis, we establish some regularity results on
the solution, by which we prove the existence of a global attractor for the solution semigroup.
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1 Introduction

Let Ω be a bounded domain in R
N (N ≥ 2) with smooth boundary. We consider the large time

behavior of solutions to the following nonlinear parabolic problem involving variable exponents⎧⎪⎨
⎪⎩
ut − div (|∇u|p(x)−2∇u) + f(x, u) = g in Ω× R

+,

u = 0 on ∂Ω× R
+,

u(x, 0) = u0(x) in Ω,

(1.1)

where u0, g ∈ L1(Ω), p ∈ C(Ω) with

1 < p− = min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < ∞.

We assume that there exists a positive constant c0 such that

|p(x)− p(y)| ≤ − c0
log |x− y| , for every x, y ∈ Ω with |x− y| < 1

2
. (1.2)

Concerning the nonlinear term f(x, u), we assume that f : Ω × R → R is a Carathéodory
mapping and there exist positive constants l, C, c1, c2, σ0 and a function b(x) ∈ L1(Ω) such that

(f(x, s1)− f(x, s2))(s1 − s2) ≥ −l|s1 − s2|2, for a.e.x ∈ Ω and any s1, s2 ∈ R, (1.3)

c2|s|q+1 − C ≤ f(x, s)s ≤ c1|s|q+1 + C, q ≥ 1, for a.e. x ∈ Ω and any s ∈ R, (1.4)

|f(x, s)| ≤ b(x), for a.e. x ∈ Ω and all s ∈ R with |s| < σ0. (1.5)

In recent years, due to the applications in various fields such as the flow through porous
media [1], image processing [2], and especially the electrorheological fluids (an essential class of
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