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In this paper, we focus on studying the exact solitary wave solutions and periodic 
wave solutions of the generalized modified Boussinesq equation utt−δuttxx−(a1u +
a2u2 + a3u3)xx = 0, as well as the evolution relationship between these solutions. 
Detailed qualitative analysis is conducted on traveling wave solutions of this 
equation, and global phase portraits in various parameter conditions are proposed. 
Various significant results about the existence of both solutions, including three 
forms of solitary wave solutions and four exact bounded periodic wave solutions in 
different conditions are obtained. Then, we further discuss the relationship between 
energy of Hamiltonian system corresponding to this equation and the periodic wave 
solutions and solitary wave solutions. It is concluded that the essential reason of 
periodic wave solutions and solitary wave solutions is the different values for the 
energy of Hamiltonian system corresponding to this equation. In addition, the 
limited relations of periodic wave solutions and solitary wave solutions with the 
energy of Hamiltonian system are proposed, and the schematic diagram of evolution 
from periodic wave solutions to solitary wave solutions is drawn.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The nonlinear modified Boussinesq equation (called “IBq” for short)

utt − uxxtt − uxx + a

2 (u2)xx = 0, (1.1)
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is an important model equation in physics and hydromechanics, obtained from hydromechanics equations, 
it can be used to describe the spread of wave in magnetic field and replace “bad” Boussinesq equation [14]
as follows

utt − uxxxx − (u + u2)xx = 0. (1.2)

Eq. (1.2) is a famous model proposed by Boussinesq in 1872 to describe shallow-water wave [1,3]. It can 
also be used to describe a series of physical phenomena about the spread of wave in plasma and nonlinear 
lattice [5,10,11]. The following variation of the modified Boussinesq equation (called “IMBq” for short)

utt − uxxtt − uxx + a

3 (u3)xx = 0, (1.3)

is always applied to the study on the properties of discordant lattice and the spread of nonlinear Alfvén 
wave [14]. Clarkson [4] has studied the Painlevé property of Eq. (1.1). Yang [19] has studied the solutions’ 
blowup of boundary value problem for the following modified Boussinesq equation

utt − uxxtt − (u + σ(u))xx = 0, (1.4)

when σ(u) = aup. Using sine-cosine function method, Wazwaz [18] has studied the following generalized 
modified Boussinesq equation by power change

utt − (u + a(u2p)xx − bup(up)xx)tt = 0, (1.5)

where p is a nonzero integer, assuming Eq. (1.5) has solutions in form

u(x, t) = {λcosm(μξ), λ sinm(2μξ)}, |ξ| ≤ π

2μ, (1.6)

where λ, μ, m �= 0 are undetermined parameters. Korsunsky [9] has listed the solitary solution to Eq. (1.1)
as follows

u(x, t) = 3(1 − v2)
a

sech2
√
v2 − 1
2v (x− vt), v2 > 1, (1.7)

and the solitary wave solution to Eq. (1.3) as follows

u(x, t) = ±
√

6(1 − v2)
a

sech

√
v2 − 1
2v (x− vt), v2 > 1, a < 0. (1.8)

Recently, Zhang [23] has studied the solitary wave solution in form

u(ξ) = Asech2(αξ)
B0 + B1sech2(αξ) , (1.9)

of the generalized modified Boussinesq equation

utt − δuxxtt − (b1u + b2u
2 + b3u

3)xx = 0, δ > 0, (1.10)

where A, B0, B1, α are undetermined constants. The above Formulas (1.7), (1.8) and (1.9) are all satisfied
with that u(ξ) → 0, as |ξ| → ∞. They are the bell-shaped solitary wave solutions whose asymptotic value 
equals zero. Moreover, (1.7) and (1.8) are particular case of (1.9).
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