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1. Introduction and main results

Decay properties of viscous non-stationary magneto-hydrodynamic (MHD) equations are considered in
the half-space R? (n > 2):

1 S o2
poAut (u-V)u—S(B-V)B+V(p+ 5Bl ) =0,
1
Rm
V-u=0, V-B=0,

8tu —

B — —AB+ (u-V)B—(B-V)u=0,

where the unknown quantities u = (u1(z,t),- -, un(x,t)), B = (Bi(x,t), -, B,(x,t)) and p = p(x, t) denote

the velocity of the fluid, the magnetic field and the pressure, respectively. The non-dimensional number Re
is the Reynolds number, Rm is the magnetic Reynolds and S = #Rzm with M being the Hartman number.

For simplicity of writing, let Re = Rm = S = 1, and p denotes the term p + §|B\2. Then the initial
boundary value problem of MHD equations can be written as follows:
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Ou—Au+ (u-V)u—(B-V)B+Vp=0 in R} x(0,00),
B—-AB+ (u-V)B—(B-V)u=0 in  R%} x (0,00),
V-u=0, V-B=0 in R} x (0,00), (1.1)
u(z,t) = B(z,t) =0 on OJR"} x (0,00),
u(z,0) =a, B(z,0)=0b in RY,

where R} = {z = (2/,2,) € R" | 2, > 0} (n > 2) is the upper-half space of R™; u(x,0) = a(z) and
B(z,0) = b(x) are the initial velocity vector and magnetic field, respectively, which satisfy the compatibility
condition in the sense of distribution: V-a =V -b =0 in R’} and the normal components of a, b equal zero
on OR"}.

In this article, 5%, (R}) denotes the set of all C'>° real vector-valued functions ¢ = (@1, ¥2,- -+, ¥,) with
compact support in R}, such that V-¢ = 0in R}. L (R%}) (1 < r < 00) is the closure of C§% (R%) with
respect to || - [[L-(ry), where L"(R’}) represents the usual Lebesgue space of vector-valued functions. For a
given Banach space X, we denote the set of measurable functions L"-integrable on (0,7") with values in X
and the set of functions continuing on [0, 7] with values in X by C(0,T; X) and L"(0,T; X), respectively.
Symbol C means a generic constant whose value may change from line to line.

Definition 1.1. Let a,b € LZ(R})NL™"(R%), n > 2. (u,B) € L>(0, oo; LZ(R%)) with (Vu,VB) €
L*(0, oco; L*(R7)) is called a strong solution of the MHD system (1.1) if

1) w, B € C(0, 00 L(RY));
2) (u, B) satisfies (1.1) in the sense of distribution in R’ x (0, 00).

The following Helmholtz decomposition is valid ([6]):
L"(R}) =LL(RY) @ L. (RY), 1<r<oo,
with

L;(Ri) = {U = (’U,17’U,2, e ,Un) € LT(Ri% V U= 07 Un|8R1 = 0}7
LT (RY) ={Vpe L'(R}); pe L, (R})}

loc
Let A denote the Stokes operator —PA in R}, where P is the associated bounded projection: L"(R"}) —
L7(R%), 1 <r < oco. Then (see [6]) the operator —A generates a bounded analytic semigroup {e~*4};>¢ in
L7 (R%). So for each a € L7 (R7), the function v = e~*4a is the unique solution of Stokes system in L7, (R")
with the corresponding function 7, that is,

Ow—Av+Vr=0 in R} x(0,00),

V.v=0 in  R% x (0,00),
v(z,t) =0 on OJR% x (0,00),
v(z,0) =a in R7%.

Bae [1,2] considered the Stokes flow e~ 'q, and established the L"-decay estimates for 1 < r < oo by
imposing some constraint conditions on the initial datum a.

Now we state the first main result as follows, which concerns the weighted decay of the Stokes flow in
LY(RY).
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