

Decay properties of solutions to the non-stationary magneto-hydrodynamic equations in half spaces

Zhaoxia Liu ${ }^{1}$
Department of information and Computational Science, School of Sciences, Minzu University of China, Beijing 100081, China

A R T I C L E I N F O

Article history:
Received 7 October 2016
Available online xxxx
Submitted by Y. Du

Keywords:
MHD equation
Strong solution
Decay property
Half-space

Abstract

L^{1}-decay properties of the strong solution (including the first and second order spacial derivatives) to the non-stationary magneto-hydrodynamic (MHD) equations are established in a half-space, and the weighted cases are also considered additionally. © 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

Decay properties of viscous non-stationary magneto-hydrodynamic (MHD) equations are considered in the half-space $\mathbb{R}_{+}^{n}(n \geq 2)$:

$$
\left\{\begin{array}{l}
\partial_{t} u-\frac{1}{R e} \Delta u+(u \cdot \nabla) u-S(B \cdot \nabla) B+\nabla\left(p+\frac{S}{2}|B|^{2}\right)=0, \\
\partial_{t} B-\frac{1}{R m} \Delta B+(u \cdot \nabla) B-(B \cdot \nabla) u=0, \\
\nabla \cdot u=0, \quad \nabla \cdot B=0,
\end{array}\right.
$$

where the unknown quantities $u=\left(u_{1}(x, t), \cdots, u_{n}(x, t)\right), B=\left(B_{1}(x, t), \cdots, B_{n}(x, t)\right)$ and $p=p(x, t)$ denote the velocity of the fluid, the magnetic field and the pressure, respectively. The non-dimensional number $R e$ is the Reynolds number, $R m$ is the magnetic Reynolds and $S=\frac{M^{2}}{R e R m}$ with M being the Hartman number. For simplicity of writing, let $R e=R m=S=1$, and p denotes the term $p+\frac{S}{2}|B|^{2}$. Then the initial boundary value problem of MHD equations can be written as follows:

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.12.018
0022-247X/© 2016 Elsevier Inc. All rights reserved.
\[

\left\{$$
\begin{array}{lll}
\partial_{t} u-\Delta u+(u \cdot \nabla) u-(B \cdot \nabla) B+\nabla p=0 & \text { in } \mathbb{R}_{+}^{n} \times(0, \infty) \tag{1.1}\\
\partial_{t} B-\Delta B+(u \cdot \nabla) B-(B \cdot \nabla) u=0 & \text { in } \mathbb{R}_{+}^{n} \times(0, \infty) \\
\nabla \cdot u=0, \quad \nabla \cdot B=0 & \text { in } \mathbb{R}_{+}^{n} \times(0, \infty) \\
u(x, t)=B(x, t)=0 & \text { on } \partial \mathbb{R}_{+}^{n} \times(0, \infty) \\
u(x, 0)=a, \quad B(x, 0)=b & \text { in } \mathbb{R}_{+}^{n}
\end{array}
$$\right.
\]

where $\mathbb{R}_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}(n \geq 2)$ is the upper-half space of $\mathbb{R}^{n} ; u(x, 0)=a(x)$ and $B(x, 0)=b(x)$ are the initial velocity vector and magnetic field, respectively, which satisfy the compatibility condition in the sense of distribution: $\nabla \cdot a=\nabla \cdot b=0$ in \mathbb{R}_{+}^{n} and the normal components of a, b equal zero on $\partial \mathbb{R}_{+}^{n}$.

In this article, $C_{0, \sigma}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ denotes the set of all C^{∞} real vector-valued functions $\varphi=\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}\right)$ with compact support in \mathbb{R}_{+}^{n}, such that $\nabla \cdot \varphi=0$ in $\mathbb{R}_{+}^{n} . L_{\sigma}^{r}\left(\mathbb{R}_{+}^{n}\right)(1<r<\infty)$ is the closure of $C_{0, \sigma}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ with respect to $\|\cdot\|_{L^{r}\left(\mathbb{R}_{+}^{n}\right)}$, where $L^{r}\left(\mathbb{R}_{+}^{n}\right)$ represents the usual Lebesgue space of vector-valued functions. For a given Banach space X, we denote the set of measurable functions L^{r}-integrable on $(0, T)$ with values in X and the set of functions continuing on $[0, T]$ with values in X by $C(0, T ; X)$ and $L^{r}(0, T ; X)$, respectively. Symbol C means a generic constant whose value may change from line to line.

Definition 1.1. Let $a, b \in L_{\sigma}^{2}\left(\mathbb{R}_{+}^{n}\right) \bigcap L^{n}\left(\mathbb{R}_{+}^{n}\right), n \geq 2$. $(u, B) \in L^{\infty}\left(0, \infty ; L_{\sigma}^{2}\left(\mathbb{R}_{+}^{n}\right)\right)$ with $(\nabla u, \nabla B) \in$ $L^{2}\left(0, \infty ; L^{2}\left(\mathbb{R}_{+}^{n}\right)\right)$ is called a strong solution of the MHD system (1.1) if

1) $u, B \in C\left(0, \infty ; L_{\sigma}^{n}\left(\mathbb{R}_{+}^{n}\right)\right)$;
2) (u, B) satisfies (1.1) in the sense of distribution in $\mathbb{R}_{+}^{n} \times(0, \infty)$.

The following Helmholtz decomposition is valid ([6]):

$$
L^{r}\left(\mathbb{R}_{+}^{n}\right)=L_{\sigma}^{r}\left(\mathbb{R}_{+}^{n}\right) \oplus L_{\pi}^{r}\left(\mathbb{R}_{+}^{n}\right), \quad 1<r<\infty
$$

with

$$
\begin{gathered}
L_{\sigma}^{r}\left(\mathbb{R}_{+}^{n}\right)=\left\{u=\left(u_{1}, u_{2}, \cdots, u_{n}\right) \in L^{r}\left(\mathbb{R}_{+}^{n}\right) ; \nabla \cdot u=0,\left.u_{n}\right|_{\partial \mathbb{R}_{+}^{n}}=0\right\} \\
L_{\pi}^{r}\left(\mathbb{R}_{+}^{n}\right)=\left\{\nabla p \in L^{r}\left(\mathbb{R}_{+}^{n}\right) ; p \in L_{l o c}^{r}\left(\overline{\mathbb{R}_{+}^{n}}\right)\right\}
\end{gathered}
$$

Let A denote the Stokes operator $-P \Delta$ in \mathbb{R}_{+}^{n}, where P is the associated bounded projection: $L^{r}\left(\mathbb{R}_{+}^{n}\right) \longrightarrow$ $L_{\sigma}^{r}\left(\mathbb{R}_{+}^{n}\right), 1<r<\infty$. Then (see [6]) the operator $-A$ generates a bounded analytic semigroup $\left\{e^{-t A}\right\}_{t \geq 0}$ in $L_{\sigma}^{r}\left(\mathbb{R}_{+}^{n}\right)$. So for each $a \in L_{\sigma}^{r}\left(\mathbb{R}_{+}^{n}\right)$, the function $v=e^{-t A} a$ is the unique solution of Stokes system in $L_{\sigma}^{r}\left(\mathbb{R}_{+}^{n}\right)$ with the corresponding function π, that is,

$$
\left\{\begin{array}{lll}
\partial_{t} v-\Delta v+\nabla \pi=0 & \text { in } & \mathbb{R}_{+}^{n} \times(0, \infty) \\
\nabla \cdot v=0 & \text { in } & \mathbb{R}_{+}^{n} \times(0, \infty) \\
v(x, t)=0 & \text { on } & \partial \mathbb{R}_{+}^{n} \times(0, \infty) \\
v(x, 0)=a & \text { in } & \mathbb{R}_{+}^{n}
\end{array}\right.
$$

Bae $[1,2]$ considered the Stokes flow $e^{-t A} a$, and established the L^{r}-decay estimates for $1 \leq r \leq \infty$ by imposing some constraint conditions on the initial datum a.

Now we state the first main result as follows, which concerns the weighted decay of the Stokes flow in $L^{1}\left(\mathbb{R}_{+}^{n}\right)$.

Download Persian Version:
https://daneshyari.com/article/5775077

Daneshyari.com

[^0]: E-mail address: zxliu@amt.ac.cn.
 ${ }^{1}$ Supported by NSFC-NRF, No. 11611540331 and Scientific Research Award Foundation of Minzu University of China (No. 2016LXY08).

