J. Math. Anal. Appl. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet - \bullet \bullet \bullet$

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

General of

MATHEMATICAL
ANALYSIS AND
APPLICATIONS

DESCRIPTION

DESCR

www.elsevier.com/locate/jmaa

Liouville theorems for supersolutions of semilinear elliptic equations with drift terms in exterior domains

Takanobu Hara

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan

ARTICLE INFO

Article history: Received 5 August 2016 Available online xxxx Submitted by Y. Du

Keywords: Liouville theorem Drift terms Semilinear equations Potential theory Fundamental solution

ABSTRACT

In this paper, we prove nonexistence of positive supersolutions of a semilinear equation $-\text{div}\left(A(x)\nabla u\right)+\mathbf{b}(x)\cdot\nabla u=f(u)$ in exterior domains in \mathbb{R}^n $(n\geq 3)$, where A(x) is bounded and uniformly elliptic, $\mathbf{b}(x)=O(|x|^{-1})$, $\text{div }\mathbf{b}=0$ and f is a continuous and positive function in $(0,\infty)$ satisfying $f(u)\sim u^q$ as $u\to 0$ with $q\leq n/(n-2)$. Furthermore, we investigate general conditions on \mathbf{b} and f for nonexistence of positive supersolutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider nonexistence of positive (weak) solutions to differential inequalities

$$\mathcal{L}u := -\operatorname{div}\left(A(x)\nabla u\right) + \mathbf{b}(x) \cdot \nabla u \ge f(x, u) \quad \text{in } \mathbb{R}^n \setminus \overline{B_R},\tag{1}$$

where $n \ge 3$ and B_R is a ball of radius R > 0 centered at the origin and A = A(x) is a bounded measurable matrix-valued function which satisfies

$$||A||_{L^{\infty}(\mathbb{R}^n)} < \infty, \quad (A(x)\xi) \cdot \xi \ge |\xi|, \quad \forall x \in \mathbb{R}^n, \ \xi \in \mathbb{R}^n.$$

Throughout the paper, we also assume that the vector-valued function $\mathbf{b} = \mathbf{b}(x)$ belongs to $(L^2_{\text{loc}}(\mathbb{R}^n))^n$ and $f: \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ is a continuous function. Specific conditions on \mathbf{b} and f will be described later. Gidas [6] and Gidas and Spruck [7] proved the nonexistence of positive C^2 supersolutions of

$$-\Delta u + \frac{\beta x}{|x|^2} \cdot \nabla u = u^q \quad \text{in } \mathbb{R}^n \setminus \overline{B_R}$$
 (2)

E-mail address: takanobuhara526@gmail.com.

 $\begin{array}{l} \text{http://dx.doi.org/10.1016/j.jmaa.2016.10.053} \\ 0022\text{-}247\text{X}/\circledcirc 2016 \text{ Elsevier Inc. All rights reserved.} \end{array}$

2

T. Hara / J. Math. Anal. Appl. • • • $(\bullet \bullet \bullet \bullet)$ • • • - • •

for $1 < q \le (n - \beta)/(n - \beta - 2)$. When $\beta = 0$, the range of the exponent is

$$1 < q \le \frac{n}{(n-2)}. (3)$$

Note that if $\beta < 0$, then $1 < (n-\beta)/(n-\beta-2) < n/(n-2)$. Therefore, when $\mathbf{b} = O(|x|^{-1})$ and $\mathbf{b} \neq 0$, the nonexistence range (3) changes, in general. The exponent $(n-\beta)/(n-\beta-2)$ is sharp. Indeed, for $-\infty < \beta < n-2$ and $q > (n-\beta)/(n-\beta-2)$, the equation (2) has a positive solution $u(x) = c(n,q)|x|^{-2/(q-1)}$.

This type of nonexistence theorem has been extended for more general supersolutions of linear and nonlinear equations by many authors, see e.g. [22,19,17,18,5,12–14,4,1,2].

Recently, Armstrong and Sirakov [4] treated a wide class of second order (nonlinear) elliptic differential operators and nonlinearities. They developed a new method to show nonexistence of supersolutions of the equation

$$-Q[u] = f(x, u) \quad \text{in } \mathbb{R}^n \setminus \overline{B_R}, \tag{4}$$

where Q[u] is several homogeneous elliptic differential operators with general nonlinearity f(x, u). In particular, they proved that if $Q[u] = \Delta u$ and if f(x, u) = f(u) satisfying $\liminf_{s\to 0} s^{-n/(n-2)} f(s) > 0$, then the equation (4) has no positive supersolutions.

On the other hand, Kondratiev et al. [14] gave a sufficient condition on **b** to assure the nonexistence of positive supersolutions of (1) for $f(x, u) = u^q$ with $1 < q \le n/(n-2)$. In [14], it was assumed that A(x) is Hölder continuous and periodic with the same period, **b** satisfies some Kato type conditions, moreover,

$$\||\mathbf{b}|\| = \left\{ C > 0; \frac{\int_{\mathbb{R}^n} |\mathbf{b}|^2 \phi^2 dx}{\int_{\mathbb{R}^n} |\nabla \phi|^2 dx} \le C^2 \quad \forall \phi \in C_c^{\infty}(\mathbb{R}^n) \right\}$$
 (5)

is sufficiently small in some sense. Under these conditions, it was proved that (1) has no positive weak supersolutions if and only if $q \le n/(n-2)$.

In this paper, we give new sufficient conditions on **b** and f for nonexistence of positive supersolutions, using methods in [4] and techniques of (nonlinear) potential theory (see e.g. [11,21,15,10]). We shall prove the following:

Theorem 1. Suppose that vector field $\mathbf{b} = \mathbf{b}_0 + \mathbf{b}_1$ satisfies

$$\|\mathbf{b}_0\| < \infty \quad and \quad \text{div } \mathbf{b}_0 = 0 \quad in \ \mathbb{R}^n$$
 (6)

and

$$\mathbf{b}_1 \in (L^{n,1}(\mathbb{R}^n \setminus \overline{B_R}))^n \quad \text{for some } R \ge 0. \tag{7}$$

Assume that $f(x,u) = |x|^{-\gamma}g(u), \ \gamma < 2$ and

$$\liminf_{s \to 0} s^{-q} g(s) > 0$$

for $q = 1 + (2 - \gamma)/(n - 2)$. Then (1) has no positive weak solutions.

Here, $L^{p,\sigma}(\Omega)$ is a Lorentz space (see Section 2 for details). When A(x) = I, $\mathbf{b}_1 = 0$ and $f(x,u) = u^q$, Theorem 1 becomes as follows:

Please cite this article in press as: T. Hara, Liouville theorems for supersolutions of semilinear elliptic equations with drift terms in exterior domains, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2016.10.053

Download English Version:

https://daneshyari.com/en/article/5775089

Download Persian Version:

https://daneshyari.com/article/5775089

Daneshyari.com