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This paper is devoted to the study of the wave propagation in a reaction-convection 
infectious disease model with a spatio-temporal delay. Previous numerical studies 
have demonstrated the existence of traveling wave fronts for the system and obtained 
a critical value c∗, which is the minimal wave speed of the traveling waves. In the 
present paper, we provide a complete and rigorous proof. To overcome the difficulty 
due to the lack of monotonicity for the system, we construct a pair of upper and lower 
solutions, and then apply the Schauder fixed point theorem to establish the existence 
of a nonnegative solution for the wave equation on a bounded interval. Moreover, 
we use a limiting argument and in turn generate the solution on the unbounded 
interval R. In particular, by constructing a suitable Lyapunov functional, we further 
show that the traveling wave solution converges to the epidemic equilibrium point 
as t = +∞.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In 2009, Li and Zou [8] used an SIR model to derive the following reaction-convection infectious disease 
model with a spatio-temporal delay⎧⎪⎪⎨⎪⎪⎩

St(t, x) = DSSxx(t, x) + μ− dS(t, x) − rI(t, x)S(t, x),

It(t, x) = DIIxx(t, x) − βI(t, x) + εr

+∞∫
−∞

fα(x− y)I(t− τ, y)S(t− τ, y)dy, (1.1)

where S and I represent the densities of the susceptible and infective individuals at time t and position 
x ∈ R, respectively, DS and DI are the corresponding diffusion rates. μ > 0 is a constant recruiting 
rate, d is the natural death rate, r > 0 denotes the infection rate, ε measures the proportion of infected 
individuals that can survive the latent period, and the delay τ represents the latency length of the infective 
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disease. β = σ + γ + d, σ, and γ are the disease-induced mortality rate and the recovery rate, respectively, 
fα(x) = 1√

4παe
− x2

4α . Readers may refer to [8] for a precise interpretation of the biological implications for 
system (1.1).

Based on an abstract treatment, Li and Zou [8] addressed the existence, uniqueness and positivity of 
solutions of system (1.1). In addition, in view of the numeric simulations, they explored the existence of 
traveling wave fronts for system (1.1), and obtained a critical value c∗, which is the minimal wave speed c
of the traveling wave fronts, i.e., system (1.1) admits traveling waves with wave speed c ≥ c∗ but no such 
traveling waves with wave speed c < c∗. In this paper, we provide the first rigorous mathematical proof of 
the existence of traveling wave solutions for system (1.1).

Since system (1.1) does not satisfy the comparison principle and possess monotone properties, it is 
difficult to apply the general theory regarding the existence of traveling wave solutions for monotone system 
developed by Huang and Zou [7], Liang and Zhao [10], Ma [11], Wang, Li and Ruan [14], Wu and Zou 
[15], and the references cited therein. In this paper, motivated by previous works [1–4,9,13,16], we use an 
iteration process [1] (see also [2–4,9,13,16]) to construct a pair of upper and lower solutions (S, I) and (S, I). 
Using the constructed pair of upper and lower solutions, we build an appropriately invariant cone ΓX of 
initial functions defined on a bounded interval, and we then apply the Schauder fixed point theorem for this 
cone to establish the existence of a nonnegative solution of (2.2) on the bounded interval, which serves as 
a candidate for the traveling wave solution for (2.2) on the unbounded interval R. Furthermore, following 
the idea proposed in [17] (also see [2–4,13]), we employ a limiting argument to generate the solution on R.

We should stress that according to the construction of the upper and lower solutions, the obtained 
traveling wave (S, I) is a nonnegative solution for (2.2) on R with (S, I)(−∞) = (1, 0). To demonstrate the 
existence of a traveling wave connecting the disease-free and endemic equilibrium, we need to prove that 
(S, I)(+∞) = (S∗, I∗). It is well known that the method of Lyapunov functionals [5] is a direct and effective 
approach for studying the global stability of delayed differential systems. However, it is challenging and 
difficult to construct a suitable Lyapouov functional for the differential systems with delay. In the present 
paper, inspired by the ideas proposed by [2–4,9], we successfully construct a Lyapunov functional and then 
show that (S, I)(+∞) = (S∗, I∗). We also comment that the construction of the Lyapunov functional is 
nontrivial and difficult because the corresponding wave profile system (2.2) is a second order functional 
differential system of mixed type (i.e., with both advanced and non-local delayed arguments).

The remainder of this paper is organized as follows. In Section 2, we give an important lemma and state 
the main results. In Section 3, we derive the preliminary results, including the construction of the upper and 
lower solutions, and the existence of the solution to (2.2) on a bounded interval. The proof of Theorem 2.1
is given in Section 4. Finally, we provide a brief discussion.

2. Main results

In this section, we state the main results. For simplicity, let

S̃(t, x) = d

μ
S(t, x

√
DI), Ĩ(t, x) = d

μ
S(t, x

√
DI),

and

d̃ = DS

DI
, r̃ = rμ

d
, k = εrμ

d
.

By dropping the tilde for convenience, we then consider the following system⎧⎪⎪⎨⎪⎪⎩
St(t, x) = dSxx(t, x) + μ(1 − S(t, x)) − rI(t, x)S(t, x),

It(t, x) = Ixx(t, x) − βI(t, x) + k

+∞∫
−∞

fα(x− y)I(t− τ, y)S(t− τ, y)dy. (2.1)
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