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The three-dimensional equations of steady compressible magnetohydrodynamic non-
isentropic flows are considered. A boundary value problem for the velocity and 
the temperature is studied in a bounded domain with arbitrarily large data. The 
existence of weak solutions to these equations is established under the assumption 
that the pressure P (ρ, θ) = c1ργ + c2ρθ for γ > 7

3 .
© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main result

Magnetohydrodynamics (MHD) [5] concerns the motion of conducting fluids in an electromagnetic field. 
The dynamic motion of the fluid and the magnetic field interact strongly on each other. It has a very 
broad range of applications. It is of importance in connection with many engineering problems, such as 
sustained plasma confinement for controlled thermonuclear fusion, liquid-mental cooling of nuclear reactors, 
and electromagnetic casting of metals. It also finds applications in geophysics and astronomy, where one 
prominent example is the so-called dynamo problem, that is, the question of the origin of the Earth’s 
magnetic field in its liquid metal core.

Due to their practical relevance, MHD problems have long been the subject of intense research. The system 
of non-isentropic steady compressible magnetohydrodynamic equations in a three dimensional bounded 
domain Ω can be read as follows:

div(ρu) = 0, (1.1)

div(ρu⊗ u) − divS(u) + ∇P = μ0rotH ×H + ρf, (1.2)
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div(Eu) = ρf · u− div(Pu) + div(Su) + div(κ(θ)∇θ) + div[μ0(u×H) ×H − 1
σ

rotH ×H], (1.3)

1
σ

ΔH = −μ0rot(u×H), divH = 0, (1.4)

where ρ, u, P = c1ρ
γ + c2ρθ, c1, c2 > 0 and H are density, velocity, pressure and magnetic field, respectively. 

f ∈ C(Ω) is a given vector field, and S(u) = μ(∇u +∇uᵀ) +λdivuI is a viscous stress tensor. κ(θ) = c3(1 +θm)
with c3, m > 0, the total energy E = E(ρ, u, θ) = 1

2ρ|u|2 + ρe(ρ, θ), and the internal energy e depends on 
the temperature and the density. For simplicity, we assume e(ρ, θ) = cvθ + 1

γ−1ρ
γ−1 with cv > 0.

System (1.1)–(1.4) is equipped with the boundary conditions:

u · n = 0, βu · τk + (1 − β)(Sn) · τk = 0, (1.5)

(1 + θm) ∂θ
∂n

+ L(θ)(θ − θ0) = 0, (1.6)

H · n = 0, rotH × n = 0, (1.7)

where τk is the tangent vector to ∂Ω, β ∈ [0, 1]. We will treat separately three cases: β = 1 which corresponds 
to the homogeneous Dirichlet condition u = 0 at ∂Ω, β = 0 which corresponds to the total slip and requires 
additional assumptions on the geometry of Ω, and β ∈ (0, 1). For the Navier boundary conditions (the 
last two cases), we denote α = β

β−1 ≥ 0. Concerning the temperature, we assume θ0(x) ≥ c0 is a positive 
smooth function at the boundary and L(θ) = c4(1 + θl) with l > 0 and c4 > 0. To avoid artificial technical 
computations, we restrict ourselves to the case m = l + 1.

When there is no electromagnetic field, the above governing system reduces to the compressible Navier–
Stokes equations. The steady compressible Navier–Stokes equations for barotropic gases with arbitrarily 
large data were for the first time considered in the book [11], where the existence of weak solutions was 
established for γ > 1 (N = 2) and γ ≥ 5

3 (N = 3). The result was improved up to γ > 3
2 in [9], however 

only for a potential force with a non-potential nonvolume force. Improvements, allowing γ slightly less than 
5
3 even for the nonpotential volume force, can be found in [1]. Further progress, allowing γ ≥ 4

3 (N = 3) and 
γ = 1 (N = 2) for the Dirichlet boundary conditions, can be found in [2,3]. Similar results, also for other 
boundary conditions, can be found in [4]. When H ≡ 0, problem (1.1)–(1.7) was considered in [7,8] where 
the existence of a weak solution was shown provided γ > 7

3 . To simplify we put c1 = c2 = c3 = c4 = cv = 1.
Our main results are as follows:

Theorem 1.1. Let β ∈ [0, 1), Ω ∈ C2 be a bounded domain in R3 which is not axially symmetric if β = 0. Let 
m = l+1 > 3γ−1

3γ−7 , γ ∈ (7
3 , 3], f ∈ L∞(Ω) and M > 0. Then there exists a weak solution to system (1.1)–(1.7)

such that

ρ ∈ L3γ−1(Ω),
∫

Ω

ρdx = M, u ∈ H1(Ω), H ∈ H1(Ω), θ ∈ H1(Ω) ∩ L3m(Ω). (1.8)

Theorem 1.2. Let β = 1, the domain Ω ∈ C2, and let m = l + 1 > 3γ−1
3γ−7 , γ ∈ (7

3 , 3]. Let f ∈ L∞(Ω) and 
M > 0. Then there exists a weak solution to system (1.1)–(1.7) such that

ρ ∈ Ls(γ)(Ω),
∫

Ω

ρdx = M, u ∈ H1(Ω), H ∈ H1(Ω), θ ∈ W 1,r(Ω) ∩ L3m(Ω), (1.9)

where s(γ) = min{3(γ − 1), 2γ} and r = min{2, 3m
m+1}.

The solutions appeared in Theorems 1.1 and 1.2 are meant in the following sense.
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