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The main object of study in the paper is the distance from a point to a line in the 
Riemannian manifold associated with the Heston model. We reduce the problem of 
computing such a distance to certain minimization problems for functions of one 
variable over finite intervals. One of the main ideas in this paper is to use a new 
system of coordinates in the Heston manifold and the level sets associated with this 
system. In the case of a vertical line, the formulas for the distance to the line are 
rather simple. For slanted lines, the formulas are more complicated, and a more 
subtle analysis of the level sets intersecting the given line is needed. We also find 
simple formulas for the Heston distance from a point to a level set. As a natural 
application, we use the formulas obtained in the present paper in the study of the 
small maturity limit of the implied volatility in the Heston model.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study a special Riemannian manifold. We call it the Heston manifold because it is 
intimately related to the Heston model of financial mathematics.

The Heston model is one of the classical stock price models with stochastic volatility. The stock price pro-
cess S and the variance process V in the Heston model satisfy the following system of stochastic differential 
equations: {

dSt = rStdt +
√
VtStdWt

dVt = (a− bVt)dt + c
√
VtdZt,

(1)

where a ≥ 0, b ≥ 0, c > 0, and r ≥ 0 is the interest rate. In (1), W and Z are correlated standard Brownian 
motions such that d〈W, Z〉t = ρdt with ρ ∈ (−1, 1). The initial condition for the process S is denoted 
by s0. The Heston model was introduced in [15]. We refer the interested reader to [10,11,14,19] for more 
information on the Heston model.
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For the sake of simplicity, we assume throughout the paper that the interest rate r is equal to zero. Then, 
the log-price process X and the variance process V in the Heston model satisfy the following system of 
stochastic differential equations:

{
dXt = −1

2Vtdt +
√
VtdWt

dVt = (a− bVt)dt + c
√
VtdZt.

The state space for the process (X, V ) is the closed half-plane H =
{
(x, v) ∈ R

2 : v ≥ 0
}
. The initial 

condition for the two-dimensional process (X, V ) will be denoted by (x0, v0).
The Riemannian metric form associated with the Heston model, for which c = 1 and ρ = 0, is defined 

on the interior H◦ of the closed half-plane H as follows: ds2 = v−1 (dx2 + dv2). This form generates the 
Riemannian distance dH on H. We call the open half-plane H◦, equipped with the metric form defined 
above, the Heston Riemannian manifold (see [13] for more details). The line {(x, v) : v = 0} is the boundary 
of the Heston manifold, and the manifold is incomplete.

Remark 1. Riemannian metrics similar to the Heston metric also appear in other fields of mathematics. For 
example, P. Daskalopoulos and R. Hamilton used the Riemannian metric in the right half-plane, defined by 
ds2 = (2x)−1 (dx2 + dy2), to study the regularity of the interface of the evolution p-Laplacian equation (see 
[4]) and the porous medium equation (see [3]). Daskalopoulos and Hamilton call this metric the cycloidal 
metric, since all the geodesics of this metric can be obtained from the standard cycloid curve by translation 
and dilation, or are horizontal lines (see Proposition I.2.1 in [3]).

Methods of mathematical analysis and differential geometry found numerous applications in quantitative 
finance. A good source of information about such applications is the book [14]. In [13], the author of the 
present paper and P. Laurence found the following formula for the Heston Riemannian distance between 
any two points (x0, v0) ∈ H and (x1, v1) ∈ H in the case, where at least one of the points is not on the 
boundary:

dH ((x0, v0), (x1, v1)) = δ

sin
(
δ
2
)√v1 + v0 − 2

√
v1v0 cos

(
δ

2

)
, (2)

where δ = δ((x0, v0), (x1, v1)) is the unique solution to the equation

(v1 + v0) (δ − sin(δ)) − 2√v1v0
(
δ cos

(
δ
2
)
− 2 sin

(
δ
2
))

2 sin2 ( δ
2
) = x1 − x0, (3)

satisfying the condition −2π < δ < 2π.
One of the main objectives in the present paper is to study the distance from a point to a line in the 

Heston manifold. Fix real numbers γ and β, and denote by Lβ,γ the line in the upper half-plane H given 
by {(x, v) ∈ H : x = β + γv, v ≥ 0}. The symbol D̂β,γ will stand for the distance from the model point 
(0, 1) ∈ H to the line Lβ,γ in the uncorrelated Heston model (ρ = 0) with c = 1. More precisely,

D̂β,γ = inf
v≥0

{dH((0, 1), (β + γv, v))} . (4)

It is worth mentioning here that our choice of the point (0, 1) in the Heston manifold and the parameters 
ρ = 0 and c = 1 does not restrict the generality in the distance to the line problem (see Remark 2 in 
Section 2).
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