Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Partially normal composition operators relevant to weighted directed trees

霐

George R. Exner^a, Il Bong Jung^b, Eun Young Lee^b, Mi Ryeong Lee^c

^a Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA

^b Department of Mathematics, Kyungpook National University, Daegu, 41566, Republic of Korea

^c Institute of Liberal Education, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk, 38430,

Republic of Korea

ARTICLE INFO

Article history: Received 27 January 2011 Available online 16 January 2017 Submitted by R. Curto

This paper is dedicated to the memory of Professor Takayuki Furuta

Keywords: Directed graph Composition operator Conditional expectation p-Hyponormality p-Paranormality

ABSTRACT

We characterize properties including *p*-hyponormality and *p*-paranormality for composition operators arising from measurable transformations on weighted directed trees, in terms of a test at each node *v* involving the masses at nodes in a neighborhood of nodes near *v*. Also constructed are certain graphs \mathcal{E} "universal" for *p*-hyponormality in that the neighborhood of any node in any graph yielding a *p*-hyponormal composition operator is a certain limit of neighborhoods in \mathcal{E} . These results are applied to some examples with particularly regular graph structures. © 2017 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let \mathcal{H} be a separable, infinite dimensional complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . The gap between normal and hyponormal operators has been considered by many operator theorists, and this study continues. One property used in this study is *p*-hyponormality; an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *p*-hyponormal if $(T^*T)^p \geq (TT^*)^p$, $p \in (0, \infty)$. If p = 1, T is hyponormal and if $p = \frac{1}{2}, T$ is semi-hyponormal [15]. As well, *T* is said to be ∞ -hyponormal if it is *p*-hyponormal for all p > 0 [10]. According to the Löwner–Heinz inequality [15,5], every *q*-hyponormal operator is *p*-hyponormal for $p \leq q$. And *T* is *p*-paranormal if $|||T|^p U ||T|^p x|| \geq |||T|^p x||^2$ for all unit vectors $x \in \mathcal{H}$. In particular, 1-paranormality is referred to as paranormality. Every *q*-paranormal operator is *p*-paranormal for $q \leq p$. It

E-mail addresses: exner@bucknell.edu (G.R. Exner), ibjung@knu.ac.kr (I.B. Jung), eunyounglee@knu.ac.kr (E.Y. Lee), leemr@cu.ac.kr (M.R. Lee).

is obvious that every p-hyponormal operator is p-paranormal, $p \in (0, \infty)$. Hence any p-hyponormal operator is q-paranormal for all $q \in (0, \infty)$.

Previously Burnap–Jung–Lambert discussed composition operators C_T on L^2 via conditional expectations in [2] and [1], in which they proved that the classes of *p*-hyponormal operators are distinct for each positive real number *p* and the *p*-paranormal operators classes are as well. They used conditional expectations to detect *p*-hyponormality of C_T , which will be main tool of this note. Also, Jung–Lim–Park constructed examples induced by some block matrix operators in [8], in which they proved that the classes of those operators are distinct with respect to each positive real number *p*. In [4] a model of a block matrix operator induced by two sequences was introduced and *p*-hyponormality was characterized, and distinctions obtained, via conditional expectation. This paper is a continuation of the study [4] of *p*-hyponormalities of composition operators on ℓ^2 .

Here is some notation and terminology related to conditional expectation. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let $T : X \to X$ be a nonsingular measurable transformation, i.e., $T^{-1}\mathcal{F} \subset \mathcal{F}$ and $\mu \circ T^{-1} \ll \mu$. We assume that the Radon–Nikodym derivative $h = d\mu \circ T^{-1}/d\mu$ is in L^{∞} . The composition operator C_T acting on $L^2 := L^2(X, \mathcal{F}, \mu)$ is defined by $C_T f = f \circ T$. The condition $h \in L^{\infty}$ assures that C_T is bounded. We consider here only bounded composition operators on L^2 . We denote the conditional expectation of f with respect to $T^{-1}\mathcal{F}$ by $Ef = E(f|T^{-1}\mathcal{F})$. We recall some known results from [9,2,6], which will be used frequently through this paper. The interested reader can find a more extensive list of properties for conditional expectations in [6] and [12]. Every $T^{-1}\mathcal{F}$ measurable function has the form $F \circ T$, where F is \mathcal{F} -measurable function. Note that $F \circ T = G \circ T$ if and only if hF = hG; in fact, $F \circ T \geq G \circ T$ if and only if $F\chi_S \geq G\chi_S$ where S = support h and χ_S is the characteristic function of S [3]. It is known that $C_T^*f = h(Ef) \circ T^{-1}$ (the previous two properties show that this expression is well-defined) and $h \circ T > 0$ a.e. Also, it is well-known that $C_T^*C_T f = hf$ for $f \in L^2$ and $C_T C_T^*f = (h \circ T) Ef$ for $f \in L^2$. In particular, we will have need of the following special case: if \mathcal{A} is the purely atomic σ -subalgebra of \mathcal{F} generated by the partition of X into sets of positive measure $\{A_k\}_{k=0}^{\infty}$, then

$$E(f|\mathcal{A}) = \sum_{k=0}^{\infty} \frac{1}{\mu(A_k)} \left(\int_{A_k} f(x) d\mu(x) \right) \chi_{A_k}.$$
(1.1)

The following known results will be crucial in this paper.

- 1° C_T is normal if and only if $T^{-1}\mathcal{F} = \mathcal{F}$ and $h = h \circ T$ [6].
- 2° C_T is quasinormal if and only if $h = h \circ T$ [14].
- 3° C_T is ∞ -hyponormal if and only if $h \ge h \circ T$ [2].
- 4° C_T is p-hyponormal if and only if h > 0 and $E(1/h^p) \leq 1/(h^p \circ T)$, for $p \in (0, \infty)$ [2].
- 5° C_T is *p*-paranormal if and only if $E(h^p) \ge h^p \circ T$ [1].

The idea in [8] and [4] provides a good motivation to study composition operators on the usual Hardy space $\ell^2(V)$ defined by a node set in a weighted directed tree $\mathcal{G} = (V, E, \mu)$ (whose notation is in the next section). For a directed tree \mathcal{G} with masses, a measurable transformation T can be defined on a node set V. A composition operator C_T can be defined by such a transformation T and can be analyzed using the results $1^\circ-5^\circ$.

This paper consists of four sections. In Section 2, we introduce some fundamental definitions and properties from graph theory for our purposes. We define a weighted directed tree $\mathcal{G} = (V, E, \mu)$ which provides a measurable transformation T on \mathcal{G} , with associated composition operator C_T on $\ell^2(V)$. With those constructions we characterize normal, quasinormal, ∞ -hyponormal, p-hyponormal, and p-paranormal composition operators C_T induced by such measurable transformations T on (V, μ) . In Section 3, we consider all $C_T(\mathcal{G})$ Download English Version:

https://daneshyari.com/en/article/5775178

Download Persian Version:

https://daneshyari.com/article/5775178

Daneshyari.com