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1. Introduction

In this paper we study existence theory to a dynamic model for the poroplastic behaviour of soil. It has
been introduced in 1993 by W. Ehlers in [16]. It can be used to describe porous media (brittle, granular)
which are often saturated by some liquids or gases. Naturally, soil is a good example of such media.

The considered model consists of the dynamical Biot model of soil consolidation (its origins are dated
back to the paper [6]) coupled with the nonlinear ordinary differential equations (1.1)4 describing inelastic
deformations (so-called constitutive equation).

In this work we assume that the porous media with the material density p > 0 lies within the subset
Q C R3. The dynamical poroplasticity model can be written in the form

pus(x,t) — div, T(x,t) + aVyp(z,t) = F(x,t),
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where ¢ (u(x,t)) means the symmetric part of the gradient of function u(x,t) i.e.

(Vou(z,t) + Viu(z,1)).

DN | =

€ (u(x’ t)) =

The first equation (1.1); is the balance of momentum coupled with the generalized Hook law (equation
(1.1)3), the second equation (1.1)y is a combination of the Darcy law and the mass conservation law for a
fluid. For any fixed T, > 0 we are interested in finding the following

o the displacement field u : Q x [0,T.] — R?,

o the pore pressure of the fluid p: Q x [0, T.] — R,

+ the inelastic deformation tensor e? : 2 x [0, Tc] — S(3) = R,
o the Cauchy stress tensor T :  x [0,T,] — S(3).

The given functions F : Q x [0,T.] — R3, and f : Q x [0,7.] — R describe a density of applied body
forces and a force of fluid extraction or injection process, respectively. Moreover, D : §(3) — S(3) is a
linear, symmetric and positive-definite elasticity tensor which is assumed to be constant in time and space,
A :8(3) — S(3) is a given inelastic constitutive function and p, a, ¢, ¢ are the positive material constants
(for details see [28]).

Problem (1.1) will be considered with the mixed boundary conditions

u(z,t) = gp(z,t), zeTp, t>0,
(T'(x,t) — ap(x, t)D)n(x) = gn (2, 1), xe€lN, t>0,
p(z,t) =gp(z,t), x€lp, t>0, (1.2)
0
Ca—i(xat)zgv(x,t), rely, t>0,

where n(x) is the outward pointing, unit normal vector at point x € 9 and the sets: I'p, ', I'p, I'y are
open subsets of J€) such that

e Ho(Tp) >0, Ha(T'p) > 0, where Ho denotes the two-dimensional Hausdorff measure.
. 3QZFDUFNZTPUF\/, I'pNIy=TpNTy =0.

We also need the following initial conditions

(@,0) = up(z), zEQ

w(2,0) = ur(z), weQ,
(,0) =po(z), x€,
(2,0) (z)

, x € .

In the paper we assume that € is an open, bounded and smooth subset of R? and the inelastic constitutive
function A is deviatoric, i.e.

A:8(3) = PS(3), where PT=T- %TI‘(T)H. (1.4)

We also assume that A has the following form
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