Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

CrossMark

Dynamical poroplasticity model – Existence theory for gradient type nonlinearities with Lipschitz perturbations

Konrad Kisiel

Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

ARTICLE INFO

Article history: Received 1 July 2016 Available online 24 January 2017 Submitted by P. Yao

Keywords: Biot model Coercive approximation Inelastic deformation Gradient type operator Poroplasticity

ABSTRACT

In this article we study existence theory to a non-coercive fully dynamic model of poroplasticity with the non-homogeneous boundary conditions where the constitutive function is a continuous element of class \mathcal{LM} (it is a sum of a maximal monotone map G and a globally Lipschitz map l). Without any additional growth conditions we are able to prove the existence of a solution such that the inelastic constitutive equation is satisfied in the measure-valued sense. Moreover, if G is a gradient of a differentiable convex function, then there exists a solution such that the constitutive equation is satisfied almost everywhere.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study existence theory to a dynamic model for the poroplastic behaviour of soil. It has been introduced in 1993 by W. Ehlers in [16]. It can be used to describe porous media (brittle, granular) which are often saturated by some liquids or gases. Naturally, soil is a good example of such media.

The considered model consists of the dynamical Biot model of soil consolidation (its origins are dated back to the paper [6]) coupled with the nonlinear ordinary differential equations $(1.1)_4$ describing inelastic deformations (so-called constitutive equation).

In this work we assume that the porous media with the material density $\rho > 0$ lies within the subset $\Omega \subset \mathbb{R}^3$. The dynamical poroplasticity model can be written in the form

$$\rho u_{tt}(x,t) - \operatorname{div}_{x} T(x,t) + \alpha \nabla_{x} p(x,t) = F(x,t),$$

$$c_{0} p_{t}(x,t) - c \Delta_{x} p(x,t) + \alpha \operatorname{div}_{x} u_{t}(x,t) = f(x,t),$$

$$T(x,t) = \mathcal{D}\left(\varepsilon\left(u(x,t)\right) - \varepsilon^{p}(x,t)\right),$$

$$\varepsilon^{p}_{t}(x,t) = A(T(x,t)),$$
(1.1)

E-mail address: K.Kisiel@mini.pw.edu.pl.

http://dx.doi.org/10.1016/j.jmaa.2017.01.045 $0022\text{-}247\mathrm{X}/\odot$ 2017 Elsevier Inc. All rights reserved.

where $\varepsilon(u(x,t))$ means the symmetric part of the gradient of function u(x,t) i.e.

$$\varepsilon (u(x,t)) = \frac{1}{2} \left(\nabla_x u(x,t) + \nabla_x^T u(x,t) \right)$$

The first equation $(1.1)_1$ is the balance of momentum coupled with the generalized Hook law (equation $(1.1)_3$), the second equation $(1.1)_2$ is a combination of the Darcy law and the mass conservation law for a fluid. For any fixed $T_e > 0$ we are interested in finding the following

- the displacement field $u: \Omega \times [0, T_e] \to \mathbb{R}^3$,
- the pore pressure of the fluid $p: \Omega \times [0, T_e] \to \mathbb{R}$,
- the inelastic deformation tensor $\varepsilon^p: \Omega \times [0, T_e] \to \mathcal{S}(3) = \mathbb{R}^{3 \times 3}_{sum}$,
- the Cauchy stress tensor $T: \Omega \times [0, T_e] \to \mathcal{S}(3)$.

The given functions $F : \Omega \times [0, T_e] \to \mathbb{R}^3$, and $f : \Omega \times [0, T_e] \to \mathbb{R}$ describe a density of applied body forces and a force of fluid extraction or injection process, respectively. Moreover, $\mathcal{D} : \mathcal{S}(3) \to \mathcal{S}(3)$ is a linear, symmetric and positive-definite elasticity tensor which is assumed to be constant in time and space, $A : \mathcal{S}(3) \to \mathcal{S}(3)$ is a given inelastic constitutive function and ρ , α , c, c_0 are the positive material constants (for details see [28]).

Problem (1.1) will be considered with the mixed boundary conditions

$$u(x,t) = g_D(x,t), \qquad x \in \Gamma_D, \ t \ge 0,$$

$$(T(x,t) - \alpha p(x,t)\mathbb{I})n(x) = g_N(x,t), \qquad x \in \Gamma_N, \ t \ge 0,$$

$$p(x,t) = g_P(x,t), \qquad x \in \Gamma_P, \ t \ge 0,$$

$$c\frac{\partial p}{\partial n}(x,t) = g_V(x,t), \qquad x \in \Gamma_V, \ t \ge 0,$$

(1.2)

where n(x) is the outward pointing, unit normal vector at point $x \in \partial \Omega$ and the sets: Γ_D , Γ_N , Γ_P , Γ_V are open subsets of $\partial \Omega$ such that

- $\mathcal{H}_2(\Gamma_D) > 0$, $\mathcal{H}_2(\Gamma_P) > 0$, where \mathcal{H}_2 denotes the two-dimensional Hausdorff measure.
- $\partial \Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N = \overline{\Gamma}_P \cup \overline{\Gamma}_V, \quad \Gamma_D \cap \Gamma_N = \Gamma_P \cap \Gamma_V = \emptyset.$

We also need the following initial conditions

$$u(x,0) = u_0(x), \qquad x \in \Omega,$$

$$u_t(x,0) = u_1(x), \qquad x \in \Omega,$$

$$p(x,0) = p_0(x), \qquad x \in \Omega,$$

$$\varepsilon^p(x,0) = \varepsilon^p_0(x), \qquad x \in \Omega.$$

(1.3)

In the paper we assume that Ω is an open, bounded and smooth subset of \mathbb{R}^3 and the inelastic constitutive function A is deviatoric, i.e.

$$A: \mathcal{S}(3) \to P\mathcal{S}(3), \quad \text{where} \quad PT = T - \frac{1}{3} \text{Tr}(T)\mathbb{I}.$$
 (1.4)

We also assume that A has the following form

Download English Version:

https://daneshyari.com/en/article/5775184

Download Persian Version:

https://daneshyari.com/article/5775184

Daneshyari.com