Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Grannel of AnAttenatical ANALYSIS AND APPLICATIONS CONTINUES CONTI

The index of weighted singular integral operators with shifts and slowly oscillating data

Alexei Yu. Karlovich^{a,*}, Yuri I. Karlovich^b, Amarino B. Lebre^c

^a Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

^b Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas,

Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209

 $Cuernavaca,\ Morelos,\ M\acute{e}xico$

^c Centro de Análise Funcional, Estruturas Lineares e Aplicações, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

ARTICLE INFO

Article history: Received 24 November 2016 Available online 24 January 2017 Submitted by J.A. Ball

Keywords: Orientation-preserving shift Weighted Cauchy singular integral operator Slowly oscillating function Semi-almost periodic function Fredholmness Index

ABSTRACT

Let α and β be orientation-preserving diffeomorphism (shifts) of $\mathbb{R}_+ = (0, \infty)$ onto itself with the only fixed points 0 and ∞ . We establish a Fredholm criterion and calculate the index of the weighted singular integral operator with shifts

$$(aI - bU_{\alpha})P_{\gamma}^{+} + (cI - dU_{\beta})P_{\gamma}^{-},$$

acting on the space $L^p(\mathbb{R}_+)$, where $P^{\pm}_{\gamma} = (I \pm S_{\gamma})/2$ are the operators associated to the weighted Cauchy singular integral operator S_{γ} given by

$$(S_{\gamma}f)(t) = \frac{1}{\pi i} \int_{\mathbb{R}_{+}} \left(\frac{t}{\tau}\right)^{\gamma} \frac{f(\tau)}{\tau - t} d\tau$$

with $\gamma \in \mathbb{C}$ satisfying $0 < 1/p + \Re \gamma < 1$, and U_{α}, U_{β} are the isometric shift operators given by

$$U_{\alpha}f = (\alpha')^{1/p}(f \circ \alpha), \quad U_{\beta}f = (\beta')^{1/p}(f \circ \beta),$$

under the assumptions that the coefficients a, b, c, d and the derivatives α', β' of the shifts are bounded and continuous on \mathbb{R}_+ and admit discontinuities of slowly oscillating type at 0 and ∞ .

© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.01.052 0022-247X/© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: oyk@fct.unl.pt (A.Yu. Karlovich), karlovich@uaem.mx (Yu.I. Karlovich), alebre@math.tecnico.ulisboa.pt (A.B. Lebre).

1. Introduction

Let $\mathcal{B}(X)$ be the Banach algebra of all bounded linear operators acting on a Banach space X and let $\mathcal{K}(X)$ be the ideal of all compact operators in $\mathcal{B}(X)$. An operator $A \in \mathcal{B}(X)$ is called *Fredholm* if its image is closed and the spaces ker A and ker A^* are finite-dimensional. In that case the number

 $\operatorname{Ind} A := \dim \ker A - \dim \ker A^*$

is referred to as the *index* of A (see, e.g., [5, Chap. 4]). For $A, B \in \mathcal{B}(X)$, we will write $A \simeq B$ if $A - B \in \mathcal{K}(X)$.

Following Sarason [26, p. 820], a bounded continuous function f on $\mathbb{R}_+ = (0, \infty)$ is called slowly oscillating (at 0 and ∞) if

$$\lim_{r \to s} \sup_{t, \tau \in [r, 2r]} |f(t) - f(\tau)| = 0 \text{ for } s \in \{0, \infty\}.$$

The set $SO(\mathbb{R}_+)$ of all slowly oscillating functions forms a C^* -algebra. This algebra properly contains $C(\overline{\mathbb{R}}_+)$, the C^* -algebra of all continuous functions on $\overline{\mathbb{R}}_+ := [0, +\infty]$.

Suppose α is an orientation-preserving diffeomorphism of \mathbb{R}_+ onto itself, which has only two fixed points 0 and ∞ . We say that α is a slowly oscillating shift if $\log \alpha'$ is bounded and $\alpha' \in SO(\mathbb{R}_+)$. The set of all slowly oscillating shifts is denoted by $SOS(\mathbb{R}_+)$. By [7, Lemma 2.2], an orientation-preserving diffeomorphism $\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ belongs to $SOS(\mathbb{R}_+)$ if and only if $\alpha(t) = te^{\omega(t)}, t \in \mathbb{R}_+$, for some real-valued function $\omega \in SO(\mathbb{R}_+) \cap C^1(\mathbb{R}_+)$ such that $\psi(t) := t\omega'(t)$ also belongs to $SO(\mathbb{R}_+)$ and $\inf_{t \in \mathbb{R}_+} (1 + t\omega'(t)) > 0$. The real-valued slowly oscillating function

$$\omega(t) := \log[\alpha(t)/t], \quad t \in \mathbb{R}_+,$$

is called the exponent function of $\alpha \in SOS(\mathbb{R}_+)$.

Through the paper, we will suppose that $1 . It is easily seen that if <math>\alpha \in SOS(\mathbb{R}_+)$, then the weighted shift operator defined by

$$U_{\alpha}f := (\alpha')^{1/p}(f \circ \alpha)$$

is an isometric isomorphism of the Lebesgue space $L^p(\mathbb{R}_+)$ onto itself. It is clear that $U_{\alpha}^{-1} = U_{\alpha_{-1}}$. Let $a, b \in SO(\mathbb{R}_+)$. We say that a dominates b and write $a \gg b$ if

$$\inf_{t\in\mathbb{R}_+}|a(t)|>0,\quad \liminf_{t\to 0}(|a(t)|-|b(t)|)>0,\quad \liminf_{t\to\infty}(|a(t)|-|b(t)|)>0.$$

Theorem 1.1 ([13, Theorem 1.1]). Suppose $a, b \in SO(\mathbb{R}_+)$ and $\alpha \in SOS(\mathbb{R}_+)$. The binomial functional operator $aI - bU_{\alpha}$ is invertible on the Lebesgue space $L^p(\mathbb{R}_+)$ if and only if either $a \gg b$ or $b \gg a$.

(a) If
$$a \gg b$$
, then $(aI - bU_{\alpha})^{-1} = \sum_{n=0}^{\infty} (a^{-1}bU_{\alpha})^n a^{-1}I$.
(b) If $b \gg a$, then $(aI - bU_{\alpha})^{-1} = -U_{\alpha}^{-1} \sum_{n=0}^{\infty} (b^{-1}aU_{\alpha}^{-1})^n b^{-1}I$.

Let $\Re \gamma$ and $\Im \gamma$ denote the real and imaginary part of $\gamma \in \mathbb{C}$, respectively. As usual, $\overline{\gamma} = \Re \gamma - i \Im \gamma$ denotes the complex conjugate of γ . If $\gamma \in \mathbb{C}$ satisfies

$$0 < 1/p + \Re \gamma < 1,$$
 (1.1)

Download English Version:

https://daneshyari.com/en/article/5775187

Download Persian Version:

https://daneshyari.com/article/5775187

Daneshyari.com