

Relations between Schramm spaces and generalized Wiener classes

Milad Moazami Goodarzi ${ }^{\text {a,* }}$, Mahdi Hormozi ${ }^{\text {b,a }}$, Nacima Memićc ${ }^{\text {c }}$
a Department of Mathematics, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
b Department of Mathematical Sciences, Division of Mathematics, University of Gothenburg, Gothenburg 41296, Sweden
${ }^{c}$ Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina

A R T I C L E I N F O

Article history:

Received 13 October 2016
Available online 17 January 2017
Submitted by B.S. Thomson
Keywords:
Generalized bounded variation
Modulus of variation
Embedding
Banach space

Abstract

We give necessary and sufficient conditions for the embeddings $\Lambda \mathrm{BV}^{(p)} \subseteq \Gamma \mathrm{BV}^{\left(q_{n} \uparrow q\right)}$ and $\Phi \mathrm{BV} \subseteq \mathrm{BV}^{\left(q_{n} \uparrow q\right)}$. As a consequence, a number of results in the literature, including a fundamental theorem of Perlman and Waterman, are simultaneously extended.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let $\Lambda=\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ be a nondecreasing sequence of positive numbers such that $\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}}=\infty$. Following [1], we call Λ a Waterman sequence. Let $\Phi=\left\{\phi_{j}\right\}_{j=1}^{\infty}$ be a sequence of increasing convex functions on $[0, \infty)$ with $\phi_{j}(0)=0$. We say that Φ is a Schramm sequence if $0<\phi_{j+1}(x) \leq \phi_{j}(x)$ for all j and $\sum_{j=1}^{\infty} \phi_{j}(x)=\infty$ for all $x>0$. This terminology is used throughout.

We begin by recalling two generalizations of the concept of bounded variation which are central to our work.

Definition 1.1. A real-valued function f on $[a, b]$ is said to be of Φ-bounded variation if

$$
V_{\Phi}(f)=V_{\Phi}(f ;[a, b])=\sup \sum_{j=1}^{n} \phi_{j}\left(\left|f\left(I_{j}\right)\right|\right)<\infty
$$

[^0]where the supremum is taken over all finite collections $\left\{I_{j}\right\}_{j=1}^{n}$ of nonoverlapping subintervals of $[a, b]$ and $f\left(I_{j}\right)=f\left(\sup I_{j}\right)-f\left(\inf I_{j}\right)$. We denote by $\Phi B \mathrm{~V}$ the linear space of all functions f such that $c f$ is of Φ-bounded variation for some $c>0$.

If for every $f \in \Phi B V$, we define

$$
\|f\|:=|f(a)|+\inf \left\{c>0: V_{\Phi}(f / c) \leq 1\right\}
$$

then it is easily seen that $\|\cdot\|$ is a norm, and $\Phi B V$ endowed with this norm turns into a Banach space. The space $\Phi B V$ is introduced in Schramm's paper [15]. For more information about $\Phi B V$, the reader is referred to [1].

If ϕ is a strictly increasing convex function on $[0, \infty)$ with $\phi(0)=0$, and if $\Lambda=\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ is a Waterman sequence, by taking $\phi_{j}(x)=\phi(x) / \lambda_{j}$ for all j, we get the class $\phi \Lambda \mathrm{BV}$ of functions of $\phi \Lambda$-bounded variation. This class was introduced by Schramm and Waterman in [16] (see also [17] and [11]). More specifically, if $\phi(x)=x^{p}(p \geq 1)$, we get the Waterman-Shiba class $\Lambda \mathrm{BV}^{(p)}$, which was introduced by Shiba in [18]. When $p=1$, we obtain the well-known Waterman class $\Lambda \mathrm{BV}$.

In the case $\lambda_{j}=1$ for all j, we obtain the class $\phi \mathrm{BV}$ of functions of ϕ-bounded variation introduced by Young [26]. More specifically, when $\phi(x)=x^{p}(p \geq 1)$, we obtain the Wiener class BV_{p} (see [24]), and taking $p=1$, we have the well-known Jordan class BV.

Remark 1.2. One can easily observe that functions of Φ-bounded variation are bounded and can only have simple discontinuities (countably many of them, indeed). The class $\Phi B V$ has many applications in Fourier analysis as well as in treating topics such as convergence, summability, etc. (see $[24,26,21-23,12,15]$).

Definition 1.3. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ and $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ be sequences of positive real numbers such that $1 \leq q_{n} \uparrow q \leq \infty$ and $2 \leq \delta_{n} \uparrow \infty$. A real-valued function f on $[a, b]$ is said to be of q_{n} - Λ-bounded variation if

$$
V_{\Lambda}(f)=V_{\Lambda}\left(f ; q_{n} \uparrow q ; \delta\right):=\sup _{n \geq 1} \sup _{\left\{I_{j}\right\}}\left(\sum_{j=1}^{s} \frac{\left|f\left(I_{j}\right)\right|^{q_{n}}}{\lambda_{j}}\right)^{\frac{1}{q_{n}}}<\infty
$$

where the $\left\{I_{j}\right\}_{j=1}^{s}$ are collections of nonoverlapping subintervals of $[a, b]$ such that $\inf _{j}\left|I_{j}\right| \geq \frac{b-a}{\delta_{n}}$. The class of functions of $q_{n}-\Lambda$-bounded variation is denoted by $\Lambda \mathrm{BV}^{\left(q_{n} \uparrow q\right)}\left(=\Lambda \mathrm{BV}_{\delta}^{\left(q_{n} \uparrow q\right)}\right)$. In the sequel, we suppose that $[a, b]=[0,1]$.

The class $\Lambda \mathrm{BV}^{\left(q_{n} \uparrow q\right)}$ was introduced by Vyas in [19]. When $\lambda_{j}=1$ for all j and $\delta_{n}=2^{n}$ for all n, we get the class $\mathrm{BV}^{\left(q_{n} \uparrow q\right)}$ _introduced by Kita and Yoneda (see [9])—which in turn recedes to the Wiener class BV_{q}, when $q_{n}=q$ for all n.

A natural and important problem is to determine relations between the above-mentioned classes; see $[21,12,4,9,6,13,8,5]$ for some results in this direction. In particular, Perlman and Waterman found the fundamental characterization of embeddings between $\Lambda \mathrm{BV}$ classes in [12]. Ge and Wang characterized the embeddings $\Lambda \mathrm{BV} \subseteq \phi \mathrm{BV}$ and $\phi \mathrm{BV} \subseteq \Lambda \mathrm{BV}$ (see [5]). It was shown by Kita and Yoneda in [9] that the embedding $\mathrm{BV}_{p} \subseteq \mathrm{BV}^{\left(p_{n} \uparrow \infty\right)}$ is both automatic and strict for all $1 \leq p<\infty$. Furthermore, Goginava characterized the embedding $\Lambda \mathrm{BV} \subseteq \mathrm{BV}^{\left(q_{n} \uparrow \infty\right)}$ in [6], and a characterization of the embedding $\Lambda \mathrm{BV}^{(p)} \subseteq \mathrm{BV}^{\left(q_{n} \uparrow q\right)}$ $(1 \leq q \leq \infty)$ was given by Hormozi, Prus-Wiśniowski and Rosengren in [8]. In this paper, we investigate the embeddings $\Lambda \mathrm{BV}^{(p)} \subseteq \Gamma \mathrm{BV}^{\left(q_{n} \uparrow q\right)}$ and $\Phi \mathrm{BV} \subseteq \mathrm{BV}^{\left(q_{n} \uparrow q\right)}(1 \leq q \leq \infty)$. The problem as to when the reverse embeddings hold is also considered, which turns out to have a simple answer (see Remark 1.10(ii) below).

Throughout this paper, the letters Λ and Γ are reserved for a typical Waterman sequence. We associate to Λ a function which we still denote by Λ and define it as $\Lambda(r):=\sum_{j=1}^{[r]} \frac{1}{\lambda_{j}}$ for $r \geq 1$. The function $\Lambda(r)$ is clearly nondecreasing and $\Lambda(r) \rightarrow \infty$ as $r \rightarrow \infty$. Our first main result reads as follows.

https://daneshyari.com/en/article/5775197

Download Persian Version:

https://daneshyari.com/article/5775197

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: milad.moazami@gmail.com (M. Moazami Goodarzi), me.hormozi@gmail.com (M. Hormozi), nacima.o@gmail.com (N. Memić).

