Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Relations between Schramm spaces and generalized Wiener classes

Milad Moazami Goodarzi^{a,*}, Mahdi Hormozi^{b,a}, Nacima Memić^c

^a Department of Mathematics, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran ^b Department of Mathematical Sciences, Division of Mathematics, University of Gothenburg, Gothenburg 41296, Sweden

Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina

ARTICLE INFO

Article history: Received 13 October 2016 Available online 17 January 2017 Submitted by B.S. Thomson

Keywords: Generalized bounded variation Modulus of variation Embedding Banach space

ABSTRACT

We give necessary and sufficient conditions for the embeddings $\Lambda BV^{(p)} \subseteq \Gamma BV^{(q_n \uparrow q)}$ and $\Phi BV \subset BV^{(q_n \uparrow q)}$. As a consequence, a number of results in the literature, including a fundamental theorem of Perlman and Waterman, are simultaneously extended.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let $\Lambda = \{\lambda_j\}_{j=1}^{\infty}$ be a nondecreasing sequence of positive numbers such that $\sum_{j=1}^{\infty} \frac{1}{\lambda_j} = \infty$. Following [1], we call Λ a Waterman sequence. Let $\Phi = \{\phi_j\}_{j=1}^{\infty}$ be a sequence of increasing convex functions on $[0, \infty)$ with $\phi_j(0) = 0$. We say that Φ is a Schramm sequence if $0 < \phi_{j+1}(x) \le \phi_j(x)$ for all j and $\sum_{j=1}^{\infty} \phi_j(x) = \infty$ for all x > 0. This terminology is used throughout.

We begin by recalling two generalizations of the concept of bounded variation which are central to our work.

Definition 1.1. A real-valued function f on [a, b] is said to be of Φ -bounded variation if

$$V_{\Phi}(f) = V_{\Phi}(f; [a, b]) = \sup \sum_{j=1}^{n} \phi_j(|f(I_j)|) < \infty,$$

 $\ast\,$ Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2017.01.033 0022-247X/© 2017 Elsevier Inc. All rights reserved.

E-mail addresses: milad.moazami@gmail.com (M. Moazami Goodarzi), me.hormozi@gmail.com (M. Hormozi), nacima.o@gmail.com (N. Memić).

where the supremum is taken over all finite collections $\{I_j\}_{j=1}^n$ of nonoverlapping subintervals of [a, b] and $f(I_j) = f(\sup I_j) - f(\inf I_j)$. We denote by ΦBV the linear space of all functions f such that cf is of Φ -bounded variation for some c > 0.

If for every $f \in \Phi BV$, we define

$$||f|| := |f(a)| + \inf\{c > 0 : V_{\Phi}(f/c) \le 1\},\$$

then it is easily seen that $\|\cdot\|$ is a norm, and ΦBV endowed with this norm turns into a Banach space. The space ΦBV is introduced in Schramm's paper [15]. For more information about ΦBV , the reader is referred to [1].

If ϕ is a strictly increasing convex function on $[0, \infty)$ with $\phi(0) = 0$, and if $\Lambda = \{\lambda_j\}_{j=1}^{\infty}$ is a Waterman sequence, by taking $\phi_j(x) = \phi(x)/\lambda_j$ for all j, we get the class $\phi\Lambda BV$ of functions of $\phi\Lambda$ -bounded variation. This class was introduced by Schramm and Waterman in [16] (see also [17] and [11]). More specifically, if $\phi(x) = x^p$ ($p \ge 1$), we get the Waterman–Shiba class $\Lambda BV^{(p)}$, which was introduced by Shiba in [18]. When p = 1, we obtain the well-known Waterman class ΛBV .

In the case $\lambda_j = 1$ for all j, we obtain the class ϕBV of functions of ϕ -bounded variation introduced by Young [26]. More specifically, when $\phi(x) = x^p$ $(p \ge 1)$, we obtain the Wiener class BV_p (see [24]), and taking p = 1, we have the well-known Jordan class BV.

Remark 1.2. One can easily observe that functions of Φ -bounded variation are bounded and can only have simple discontinuities (countably many of them, indeed). The class Φ BV has many applications in Fourier analysis as well as in treating topics such as convergence, summability, etc. (see [24,26,21–23,12,15]).

Definition 1.3. Let $\{q_n\}_{n=1}^{\infty}$ and $\{\delta_n\}_{n=1}^{\infty}$ be sequences of positive real numbers such that $1 \leq q_n \uparrow q \leq \infty$ and $2 \leq \delta_n \uparrow \infty$. A real-valued function f on [a, b] is said to be of q_n - Λ -bounded variation if

$$V_{\Lambda}(f) = V_{\Lambda}(f; q_n \uparrow q; \delta) := \sup_{n \ge 1} \sup_{\{I_j\}} \left(\sum_{j=1}^s \frac{|f(I_j)|^{q_n}}{\lambda_j} \right)^{\frac{1}{q_n}} < \infty,$$

where the $\{I_j\}_{j=1}^s$ are collections of nonoverlapping subintervals of [a, b] such that $\inf_j |I_j| \ge \frac{b-a}{\delta_n}$. The class of functions of q_n - Λ -bounded variation is denoted by $\Lambda BV^{(q_n \uparrow q)}$ (= $\Lambda BV_{\delta}^{(q_n \uparrow q)}$). In the sequel, we suppose that [a, b] = [0, 1].

The class $\Lambda BV^{(q_n\uparrow q)}$ was introduced by Vyas in [19]. When $\lambda_j = 1$ for all j and $\delta_n = 2^n$ for all n, we get the class $BV^{(q_n\uparrow q)}$ —introduced by Kita and Yoneda (see [9])—which in turn recedes to the Wiener class BV_q , when $q_n = q$ for all n.

A natural and important problem is to determine relations between the above-mentioned classes; see [21,12,4,9,6,13,8,5] for some results in this direction. In particular, Perlman and Waterman found the fundamental characterization of embeddings between ABV classes in [12]. Ge and Wang characterized the embeddings $ABV \subseteq \phi BV$ and $\phi BV \subseteq ABV$ (see [5]). It was shown by Kita and Yoneda in [9] that the embedding $BV_p \subseteq BV^{(p_n\uparrow\infty)}$ is both automatic and strict for all $1 \le p < \infty$. Furthermore, Goginava characterized the embedding $ABV \subseteq BV^{(q_n\uparrow\infty)}$ in [6], and a characterization of the embedding $ABV^{(p)} \subseteq BV^{(q_n\uparrow\alpha)}$ in [6], and a characterization of the embedding $ABV^{(p)} \subseteq BV^{(q_n\uparrow q)}$ ($1 \le q \le \infty$) was given by Hormozi, Prus-Wiśniowski and Rosengren in [8]. In this paper, we investigate the embeddings $ABV^{(p)} \subseteq \Gamma BV^{(q_n\uparrow q)}$ and $\Phi BV \subseteq BV^{(q_n\uparrow q)}$ ($1 \le q \le \infty$). The problem as to when the reverse embeddings hold is also considered, which turns out to have a simple answer (see Remark 1.10(ii) below).

Throughout this paper, the letters Λ and Γ are reserved for a typical Waterman sequence. We associate to Λ a function which we still denote by Λ and define it as $\Lambda(r) := \sum_{j=1}^{[r]} \frac{1}{\lambda_j}$ for $r \ge 1$. The function $\Lambda(r)$ is clearly nondecreasing and $\Lambda(r) \to \infty$ as $r \to \infty$. Our first main result reads as follows.

Download English Version:

https://daneshyari.com/en/article/5775197

Download Persian Version:

https://daneshyari.com/article/5775197

Daneshyari.com