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In this article we examine several classes of analytic Fourier–Feynman transforms 
on Wiener space. The classes investigated in this article form commutative monoids 
(and hence semigroups).
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1. Introduction

The main purpose of this article is to classify some of the classes of the analytic Fourier–Feynman 
transforms (FFT) using an algebraic viewpoint. The analytic FFT is a well-known transform defined on 
infinite dimensional linear spaces.

Let C0[0, T ] denote one-parameter Wiener space, that is, the space of all real-valued continuous functions 
x on [0, T ] with x(0) = 0. Let M denote the class of all Wiener measurable subsets of C0[0, T ] and let m
denote Wiener measure which is a Gaussian measure on C0[0, T ] with mean zero and covariance function 
r(s, t) = min{s, t}. Then, as is well known, (C0[0, T ], M, m) is a complete measure space. The concept of 
the analytic FFT of functionals on the Wiener space C0[0, T ], introduced by Brue [1], has been developed 
in the literature. For instance, see [3,9,11,12]. This transform and its properties are similar in many respects 
to the ordinary Fourier transform of functions on Euclidean space. For an elementary introduction of the 
analytic FFT, see [20] and the references cited therein.

To explain what this transform is in its original context, let C ′
0[0, T ] be the class of absolutely continuous 

functions x from [0, T ] to R for which x(0) = 0 and with Dx ≡ dx/dt ∈ L2[0, T ], and let D be the 
non-existent Lebesgue measure on C ′

0[0, T ]. It is known that the space C ′
0[0, T ] is an infinite dimensional 

separable Hilbert space. In the heuristic setting, the FFT of a functional F on H is defined by
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{
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}
D(x)

(1.1)

where (·, ·)C′
0

denotes the inner product given by (x1, x2)C′
0

=
∫ T

0 Dx1(t)Dx2(t)dt (and hence ‖x‖2
C′

0
means 

the energy of the particle with the trajectory x), D is the heuristic version of Lebesgue measure, q is a 
nonzero real number, and Zq is taken to be a normalization constant for which 1

Zq
exp{ iq

2 ‖x‖2
C′

0
}D(x) is 

a probability measure on C ′
0[0, T ]. If we set y = 0 in (1.1), then equation (1.1) can be interpreted as the 

Feynman path integral. In [8], Feynman suggested D as a Lebesgue measure (namely, a translation invariant 
measure). As is widely known, there is not a true measure D on infinite dimensional spaces, and Zq is, in 
fact, infinite. Even if this is a very heuristic description because of the formal observation above, one can 
see that ‘Fourier’ refers to the exp{−iq(x, y)C′

0
} term while ‘Feynman’ refers to the exp{ iq

2 ‖x‖2
C′

0
} term in 

the integrand.
In order to furnish a rigorous definition of the FFT, let (C ′

0[0, T ], C0[0, T ], m) be the abstract Wiener 
space with C ′

0[0, T ] i
↪→ C0[0, T ], where the natural inclusion i has a dense image under the supremum norm 

on C0[0, T ], see [14]. For each λ > 0, let us use the usual informal expression for Wiener measure with 
variance λ−1 given by

dmλ(x) = 1
Zλ

exp
{
− λ

2 ‖x‖
2
C′

0

}
D(x).

Then a heuristic calculation shows that for y ∈ C ′
0[0, T ],
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=
∫

C′
0[0,T ]

F (λ−1/2x + y)dm(x).

Thus we should expect that the FFT of F on C0[0, T ] is given by

Tq(F )(y) = lim
λ→−iq

∫
C0[0,T ]

F (λ−1/2x + y)dm(x), (1.2)
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